Ion cyclotron emission due to fast Alfvén-wave radiative instabilities in tokamaks induced by newly born fusion products

1997 ◽  
Vol 58 (2) ◽  
pp. 287-313 ◽  
Author(s):  
V. ARUNASALAM

The velocity distribution functions of newly born (t=0) charged fusion products (protons in DD and alpha particles in DT plasmas) of tokamak discharges can be approximated by a monoenergetic ring distribution with a finite v∥ such that v⊥≈v∥ ≈Vj, where ½MjV2j =Ej, the directed birth energy of the charged fusion-product species j of mass Mj. As the time t progresses, these distribution functions will evolve into a Gaussian in velocity (i.e. a drifting Maxwellian type), with thermal spreads given by the perpendicular and parallel temperatures T⊥j(t) =T∥j(t), with Tj(t) increasing as t increases and finally reaching an isotropic saturation value offormula hereHere Td is the temperature of the background deuterium plasma ions, M is the mass of a triton or a neutron for j=protons and alpha particles respectively, and τj≈¼τsj is the thermalization time of the fusion product species j in the background deuterium plasma, with τsj the slowing-down time. For times t of the order of τj, the distributions can be approximated by a Gaussian in the total energy (i.e. a Brysk type). Then, for times t[ges ]τsj, the velocity distributions of the fusion products will relax towards their appropriate slowing-down distributions. Here we shall examine the radiative stability of all these (i.e. a monoenergetic ring, a Gaussian in velocity, a Gaussian in energy, and the slowing-down) distributions.

Author(s):  
Samuel A Lazerson ◽  
Alexandra LeViness ◽  
Jorrit Lion

Abstract Gyrocenter following simulations of fusion born alpha particles in a stellarator reactor are preformed using the BEAMS3D code. The Wendelstein 7-X high mirror configuration is scaled in geometry and magnetic field to reactor relevant parameters. A 2×1020 m−3 density plasma with 20 keV core temperatures is assumed and fusion birth rates calculated for various fusion products assuming a 50/50 deuterium-tritium mixture. It is found that energetic He4 ions comprise the vast majority of the energetic particle inventory. Slowing down simulations of the He4 population suggest plasma heating consistent with scaled energy confinement times for a stellarator reactor. Losses for this configuration appear large suggesting optimization beyond the scope of the W7-X device is key to a future fusion reactor. These first simulations are designed to demonstrate the capability of the BEAMS3D code to provide fusion alpha birth and heating profiles for stellarator reactor designs.


2018 ◽  
Author(s):  
Horia Comişel ◽  
Yasuhiro Nariyuki ◽  
Yasuhito Narita ◽  
Uwe Motschmann

Abstract. By means of hybrid simulations, we present a study on plasma heating by the field-aligned parametric decay of a monochromatic left-handed polarized Alfven wave. Simultaneous multidimensional comparisons of the wave modes and proton kinetics suggest that parametric decay of Alfven waves and pitch angle scattering of solar wind protons are interrelated. Parametric decay mechanism yields counter-propagating Alfven waves that can shape and broaden via pitch angle scattering mechanism both the sunward and antisunward sides of the proton velocity distribution functions in agreement with in situ measurements of fast stream solar wind plasmas.


2019 ◽  
Vol 19 (5) ◽  
pp. 368-381 ◽  
Author(s):  
Linh N.K. Tran ◽  
Ganessan Kichenadasse ◽  
Pamela J. Sykes

Prostate cancer (PCa) is the most frequent cancer in men. The evolution from local PCa to castration-resistant PCa, an end-stage of disease, is often associated with changes in genes such as p53, androgen receptor, PTEN, and ETS gene fusion products. Evidence is accumulating that repurposing of metformin (MET) and valproic acid (VPA) either when used alone, or in combination, with another therapy, could potentially play a role in slowing down PCa progression. This review provides an overview of the application of MET and VPA, both alone and in combination with other drugs for PCa treatment, correlates the responses to these drugs with common molecular changes in PCa, and then describes the potential for combined MET and VPA as a systemic therapy for prostate cancer, based on potential interacting mechanisms.


1989 ◽  
Vol 41 (3) ◽  
pp. 493-516 ◽  
Author(s):  
Jan Scheffel ◽  
Bo Lehnert

The classical phenomenon of electron plasma oscillations has been investigated from new aspects. The applicability of standard normal-mode analysis of plasma perturbations has been judged from comparisons with exact numerical solutions to the linearized initial-value problem. We consider both Maxwellian and non-Maxwellian velocity distributions. Emphasis is on perturbations for which αλD is of order unity, where α is the wavenumber and λD the Debye distance. The corresponding large-Debye-distance (LDD) damping is found to substantially dominate over Landau damping. This limits the applicability of normal-mode analysis of non-Maxwellian distributions. The physics of LDD damping and its close connection to large-Larmor-radius (LLR) damping is discussed. A major discovery concerns perturbations of plasmas with non-Maxwellian, bump-in-tail, velocity distribution functions f0(ω). For sufficiently large αλD (of order unity) the plasma responds by damping perturbations that are initially unstable in the Landau sense, i.e. with phase velocities initially in the interval where df0/dw > 0. It is found that the plasma responds through shifting the phase velocity above the upper velocity limit of this interval. This is shown to be due to a resonance with the drifting electrons of the bump, and explains the Penrose criterion.


2021 ◽  
Vol 923 (1) ◽  
pp. 116
Author(s):  
Mihailo M. Martinović ◽  
Kristopher G. Klein ◽  
Tereza Ďurovcová ◽  
Benjamin L. Alterman

Abstract Instabilities described by linear theory characterize an important form of wave–particle interaction in the solar wind. We diagnose unstable behavior of solar wind plasma between 0.3 and 1 au via the Nyquist criterion, applying it to fits of ∼1.5M proton and α particle Velocity Distribution Functions (VDFs) observed by Helios I and II. The variation of the fraction of unstable intervals with radial distance from the Sun is linear, signaling a gradual decline in the activity of unstable modes. When calculated as functions of the solar wind velocity and Coulomb number, we obtain more extreme, exponential trends in the regions where collisions appear to have a notable influence on the VDF. Instability growth rates demonstrate similar behavior, and significantly decrease with Coulomb number. We find that for a nonnegligible fraction of observations, the proton beam or secondary component might not be detected, due to instrument resolution limitations, and demonstrate that the impact of this issue does not affect the main conclusions of this work.


2021 ◽  
Author(s):  
Xin Yao ◽  
Patricio A. Muñoz ◽  
Jörg Büchner

<div> <div>Magnetic reconnection can convert magnetic energy into non-thermal particle energy in the form of electron beams. Those accelerated electrons can, in turn, cause radio emission in environments such as solar flares. The actual properties of those electron velocity distribution functions (EVDFs) generated by reconnection are still not well understood. In particular the properties that are relevant for the micro-instabilities responsible for radio emission. We aim thus at characterizing the electron distributions functions generated by 3D magnetic reconnection by means of fully kinetic particle-in-cell (PIC) code simulations. Our goal is to characterize the possible sources of free energy of the generated EVDFs in dependence on an external (guide) magnetic field strength. We find that: (1) electron beams with positive gradients in their parallel (to the local magnetic field direction) distribution functions are observed in both diffusion region (parallel crescent-shaped EVDFs) and separatrices (bump-on-tail EVDFs). These non-thermal EVDFs cause counterstreaming and bump-on-tail instabilities. These electrons are adiabatic and preferentially accelerated by a parallel electric field in regions where the magnetic moment is conserved. (2) electron beams with positive gradients in their perpendicular distribution functions are observed in regions with weak magnetic field strength near the current sheet midplane. The characteristic crescent-shaped EVDFs (in perpendicular velocity space) are observed in the diffusion region. These non-thermal EVDFs can cause electron cyclotron maser instabilities. These non-thermal electrons in perpendicular velocity space are mainly non-adiabatic. Their EVDFs are attributed to electrons experiencing an E×B drift and meandering motion. (3) As the guide field strength increases, the number of locations in the current sheet with distributions functions featuring a perpendicular source of free energy significantly decreases.</div> </div>


2021 ◽  
Author(s):  
Maxime Dubart ◽  
Urs Ganse ◽  
Adnane Osmane ◽  
Andreas Johlander ◽  
Markus Battarbee ◽  
...  

<p>Numerical simulations are widely used in modern space physics and are an essential tool to understand or discover new phenomena which cannot be observed using spacecraft measurements. However, numerical simulations are limited by the space grid resolution of the system and the computational costs of having a high spatial resolution. Therefore, some physics may be unresolved in part of the system due to its low spatial resolution. We have previously identified, using Vlasiator, that the proton cyclotron instability is not resolved for grid cell sizes larger than four times the inertial length in the solar wind, for waves in the downstream of the quasi-perpendicular shock in the magnetosheath of a global hybrid-Vlasov simulation. This leads to unphysically high perpendicular temperature and a dominance of the mirror mode waves. In this study, we use high-resolution simulations to measure and quantify how the proton cyclotron instability diffuses and isotropizes the velocity distribution functions. We investigate the process of pitch-angle scattering during the development of the instability and propose a method for the sub-grid modelling of the diffusion process of the instability at low resolution. This allows us to model the isotropization of the velocity distribution functions and to reduce the temperature anisotropy in the plasma while saving computational resources.</p>


Sign in / Sign up

Export Citation Format

Share Document