An interpretation of “finite” modal first-order languages in classical second-order languages

1976 ◽  
Vol 41 (2) ◽  
pp. 337-340
Author(s):  
Scott K. Lehmann

This note describes a simple interpretation * of modal first-order languages K with but finitely many predicates in derived classical second-order languages L(K) such that if Γ is a set of K-formulae, Γ is satisfiable (according to Kripke's 55 semantics) iff Γ* is satisfiable (according to standard (or nonstandard) second-order semantics).The motivation for the interpretation is roughly as follows. Consider the “true” modal semantics, in which the relative possibility relation is universal. Here the necessity operator can be considered a universal quantifier over possible worlds. A possible world itself can be identified with an assignment of extensions to the predicates and of a range to the quantifiers; if the quantifiers are first relativized to an existence predicate, a possible world becomes simply an assignment of extensions to the predicates. Thus the necessity operator can be taken to be a universal quantifier over a class of assignments of extensions to the predicates. So if these predicates are regarded as naming functions from extensions to extensions, the necessity operator can be taken as a string of universal quantifiers over extensions.The alphabet of a “finite” modal first-order language K shall consist of a non-empty countable set Var of individual variables, a nonempty finite set Pred of predicates, the logical symbols ‘¬’ ‘∧’, and ‘∧’, and the operator ‘◊’. The formation rules of K generate the usual Polish notations as K-formulae. ‘ν’, ‘ν1’, … range over Var, ‘P’ over Pred, ‘A’ over K-formulae, and ‘Γ’ over sets of K-formulae.

2020 ◽  
Vol 30 (7) ◽  
pp. 1305-1329 ◽  
Author(s):  
Mikhail Rybakov ◽  
Dmitry Shkatov

Abstract We study the effect of restricting the number of individual variables, as well as the number and arity of predicate letters, in languages of first-order predicate modal logics of finite Kripke frames on the logics’ algorithmic properties. A finite frame is a frame with a finite set of possible worlds. The languages we consider have no constants, function symbols or the equality symbol. We show that most predicate modal logics of natural classes of finite Kripke frames are not recursively enumerable—more precisely, $\varPi ^0_1$-hard—in languages with three individual variables and a single monadic predicate letter. This applies to the logics of finite frames of the predicate extensions of the sublogics of propositional modal logics $\textbf{GL}$, $\textbf{Grz}$ and $\textbf{KTB}$—among them, $\textbf{K}$, $\textbf{T}$, $\textbf{D}$, $\textbf{KB}$, $\textbf{K4}$ and $\textbf{S4}$.


Disputatio ◽  
2012 ◽  
Vol 4 (33) ◽  
pp. 427-443
Author(s):  
Iris Einheuser

Abstract This paper explores a new non-deflationary approach to the puzzle of nonexistence and its cousins. On this approach, we can, under a plausible assumption, express true de re propositions about certain objects that don’t exist, exist indeterminately or exist merely possibly. The defense involves two steps: First, to argue that if we can actually designate what individuates a nonexistent target object with respect to possible worlds in which that object does exist, then we can express a de re proposition about “it”. Second, to adapt the concept of outer truth with respect to a possible world – a concept familiar from actualist modal semantics – for use in representing the actual world.


Author(s):  
Thomas J. McKay

In reasoning we often use words such as ‘necessarily’, ‘possibly’, ‘can’, ‘could’, ‘must’ and so on. For example, if we know that an argument is valid, then we know that it is necessarily true that if the premises are true, then the conclusion is true. Modal logic starts with such modal words and the inferences involving them. The exploration of these inferences has led to a variety of formal systems, and their interpretation is now most often built on the concept of a possible world. Standard non-modal logic shows us how to understand logical words such as ‘not’, ‘and’ and ‘or’, which are truth-functional. The modal concepts are not truth-functional: knowing that p is true (and what ‘necessarily’ means) does not automatically enable one to determine whether ‘Necessarily p’ is true. (‘It is necessary that all people have been people’ is true, but ‘It is necessary that no English monarch was born in Montana’ is false, even though the simpler constituents – ‘All people have been people’ and ‘No English monarch was born in Montana’– are both true.) The study of modal logic has helped in the understanding of many other contexts for sentences that are not truth-functional, such as ‘ought’ (‘It ought to be the case that p’) and ‘believes’ (‘Alice believes that p’); and also in the consideration of the interaction between quantifiers and non-truth-functional contexts. In fact, much work in modern semantics has benefited from the extension of modal semantics introduced by Richard Montague in beginning the development of a systematic semantics for natural language. The framework of possible worlds developed for modal logic has been fruitful in the analysis of many concepts. For example, by introducing the concept of relative possibility, Kripke showed how to model a variety of modal systems: a proposition is necessarily true at a possible world w if and only if it is true at every world that is possible relative to w. To achieve a better analysis of statements of ability, Mark Brown adapted the framework by modelling actions with sets of possible outcomes. John has the ability to hit the bull’s-eye reliably if there is some action of John’s such that every possible outcome of that action includes John’s hitting the bull’s-eye. Modal logic and its semantics also raise many puzzles. What makes a modal claim true? How do we tell what is possible and what is necessary? Are there any possible things that do not exist (and what could that mean anyway)? Does the use of modal logic involve a commitment to essentialism? How can an individual exist in many different possible worlds?


1966 ◽  
Vol 31 (4) ◽  
pp. 633-640 ◽  
Author(s):  
Mitsuru Yasuhara

The equi-cardinality quantifier1 to be used in this article, written as Qx, is characterised by the following semantical rule: A formula QxA(x) is true in a relational system exactly when the cardinality of the set consisting of these elements which make A(x) true is the same as that of the universe. For instance, QxN(x) is true in 〈Rt, N〉 but false in 〈Rl, N〉 where Rt, Rl, and N are the sets of rational numbers, real numbers, and natural numbers, respectively. We notice that in finite domains the equi-cardinality quantifier is the same as the universal quantifier. For this reason, all relational systems considered in the following are assumed infinite.


1984 ◽  
Vol 49 (4) ◽  
pp. 1333-1338
Author(s):  
Cornelia Kalfa

In [4] I proved that in any nontrivial algebraic language there are no algorithms which enable us to decide whether a given finite set of equations Σ has each of the following properties except P2 (for which the problem is open):P0(Σ) = the equational theory of Σ is equationally complete.P1(Σ) = the first-order theory of Σ is complete.P2(Σ) = the first-order theory of Σ is model-complete.P3(Σ) = the first-order theory of the infinite models of Σ is complete.P4(Σ) = the first-order theory of the infinite models of Σ is model-complete.P5(Σ) = Σ has the joint embedding property.In this paper I prove that, in any finite trivial algebraic language, such algorithms exist for all the above Pi's. I make use of Ehrenfeucht's result [2]: The first-order theory generated by the logical axioms of any trivial algebraic language is decidable. The results proved here are part of my Ph.D. thesis [3]. I thank Wilfrid Hodges, who supervised it.Throughout the paper is a finite trivial algebraic language, i.e. a first-order language with equality, with one operation symbol f of rank 1 and at most finitely many constant symbols.


2021 ◽  
Vol 77 (1) ◽  
Author(s):  
Jaco Gericke

In this article, a supplementary yet original contribution is made to the ongoing attempts at refining ways of comparative-philosophical conceptual clarification of Qohelet’s claim that הבל הכל in 1:2 (and 12:8). Adopting and adapting the latest analytic metaphysical concerns and categories for descriptive purposes only, a distinction is made between הבל as property of הכל and the properties of הבל in relation to הכל. Involving both correlation and contrast, the second-order language framework is hereby extended to a level of advanced nuance and specificity for restating the meaning of the book’s first-order language on its own terms, even if not in them.Contribution: By considering logical, ontological, mereological and typological aspects of property theory in dialogue with appearances of הכל and of הבל in Ecclesiastes 1:2 and 12:8 and in-between, a new way is presented in the quest to explain why things in the world of the text are the way they are, or why they are at all.


1975 ◽  
Vol 40 (2) ◽  
pp. 186-196 ◽  
Author(s):  
Ralph Mckenzie

An algorithm has been described by S. Burris [3] which decides if a finite set of identities, whose function symbols are of rank at most 1, has a finite, nontrivial model. (By “nontrivial” it is meant that the universe of the model has at least two elements.) As a consequence of some results announced in the abstracts [2] and [8], it is clear that if the restriction on the ranks of function symbols is relaxed somewhat, then this finite model problem is no longer solvable by an algorithm, or at least not by a “recursive algorithm” as the term is used today.In this paper we prove a sharp form of this negative result; showing, by the way, that Burris' result is in a sense the best possible result in the positive direction. Our main result is that in a first order language whose only function or relation symbol is a 2-place function symbol (the language of groupoids), the set of identities that have no nontrivial model, is recursively inseparable from the set of identities such that the sentence has a finite model. As a corollary, we have that each of the following problems, restricted to sentences defined in the language of groupoids, is algorithmically unsolvable: (1) to decide if an identity has a finite nontrivial model; (2) to decide if an identity has a nontrivial model; (3) to decide if a universal sentence has a finite model; (4) to decide if a universal sentence has a model. We note that the undecidability of (2) was proved earlier by McNulty [13, Theorem 3.6(i)], improving results obtained by Murskiǐ [14] and by Perkins [17]. The other parts of the corollary seem to be new.


1985 ◽  
Vol 50 (4) ◽  
pp. 953-972 ◽  
Author(s):  
Anne Bauval

This article is a rewriting of my Ph.D. Thesis, supervised by Professor G. Sabbagh, and incorporates a suggestion from Professor B. Poizat. My main result can be crudely summarized (but see below for detailed statements) by the equality: first-order theory of F[Xi]i∈I = weak second-order theory of F.§I.1. Conventions. The letter F will always denote a commutative field, and I a nonempty set. A field or a ring (A; +, ·) will often be written A for short. We shall use symbols which are definable in all our models, and in the structure of natural numbers (N; +, ·):— the constant 0, defined by the formula Z(x): ∀y (x + y = y);— the constant 1, defined by the formula U(x): ∀y (x · y = y);— the operation ∹ x − y = z ↔ x = y + z;— the relation of division: x ∣ y ↔ ∃ z(x · z = y).A domain is a commutative ring with unity and without any zero divisor.By “… → …” we mean “… is definable in …, uniformly in any model M of L”.All our constructions will be uniform, unless otherwise mentioned.§I.2. Weak second-order models and languages. First of all, we have to define the models Pf(M), Sf(M), Sf′(M) and HF(M) associated to a model M = {A; ℐ) of a first-order language L [CK, pp. 18–20]. Let L1 be the extension of L obtained by adjunction of a second list of variables (denoted by capital letters), and of a membership symbol ∈. Pf(M) is the model (A, Pf(A); ℐ, ∈) of L1, (where Pf(A) is the set of finite subsets of A. Let L2 be the extension of L obtained by adjunction of a second list of variables, a membership symbol ∈, and a concatenation symbol ◠.


2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Zoran Majkić

We considered an extension of the first-order logic (FOL) by Bealer's intensional abstraction operator. Contemporary use of the term “intension” derives from the traditional logical Frege-Russell doctrine that an idea (logic formula) has both an extension and an intension. Although there is divergence in formulation, it is accepted that the “extension” of an idea consists of the subjects to which the idea applies, and the “intension” consists of the attributes implied by the idea. From the Montague's point of view, the meaning of an idea can be considered as particular extensions in different possible worlds. In the case of standard FOL, we obtain a commutative homomorphic diagram, which is valid in each given possible world of an intensional FOL: from a free algebra of the FOL syntax, into its intensional algebra of concepts, and, successively, into an extensional relational algebra (different from Cylindric algebras). Then we show that this composition corresponds to the Tarski's interpretation of the standard extensional FOL in this possible world.


1970 ◽  
Vol 35 (4) ◽  
pp. 535-555 ◽  
Author(s):  
Wilbur John Walkoe

In [3] Henkin made the observation that certain second-order existential formulas may be thought of as the Skolem normal forms of formulas of a language which is first-order in every respect except its incorporation of a form of partially-ordered quantification. One formulation of this sort of language is the closure of a first-order language under the formation rule that Qφ is a formula whenever φ is a formula and Q, which is to be thought of as a quantifier-prefix, is a system of partial order whose universe is a set of quantifiers. Although he introduced this idea in a discussion of infinitary logic, Henkin went on to discuss its application to finitary languages, and he concluded his discussion with a theorem of Ehrenfeucht that the incorporation of an extremely simple partially-ordered quantifier-prefix (the quantifiers ∀x, ∀y, ∃v, and ∃w, with the ordering {〈∀x, ∃v〉, 〈∀y, ∃w〉}) into any first-order language with identity gives a language capable of expressing the infinitary quantifier ∃zκ0x.


Sign in / Sign up

Export Citation Format

Share Document