Changes in Light Intensity and Diel Vertical Migration: a Comparison of Marine and Freshwater Environments

Author(s):  
J. Ringelberg

Proximate aspects of diel vertical migration in the freshwater and marine environment are compared using data from the literature. Examples of migrations in both environments are presented, from which it is concluded that relative changes in light intensity before sunrise and after sunset are primary causes of migrations. Experiments have shown that photoreactive behaviour is enhanced in the presence of predators but inhibited by shortage of food. These factors are called secondary causal factors. A hierarchy of causal factors is proposed. In lakes fish exudates suffice but in marine biotopes like bays, it is possible that fish have to be actually present for enhancement to take effect. To what extent the presented stimulus-response mechanism holds for mesopelagic animals in oceans is discussed on the basis of vertical distributions of euphausiids.

2015 ◽  
Vol 73 (4) ◽  
pp. 1214-1225 ◽  
Author(s):  
Amy L. Lusher ◽  
Ciaran O'Donnell ◽  
Rick Officer ◽  
Ian O'Connor

Abstract Microplastics in the marine environment are well documented, and interactions with marine biota have been described worldwide. However, interactions with vertically migrating fish are poorly understood. The diel vertical migration of mesopelagic fish represents one, if not the largest, vertical migration of biomass on the planet, and is thus an important link between the euphotic zone, transporting carbon and other nutrients to global deep sea communities. Knowledge of how mesopelagic fish interact and distribute plastic as a marine contaminant is required as these populations have been identified as a potential global industrial fishery for fishmeal production. Ingestion of microplastic by mesopelagic fish in the Northeast Atlantic was studied. Approximately 11% of the 761 fish examined had microplastics present in their digestive tracts. No clear difference in ingestion frequency was identified between species, location, migration behaviour, or time of capture. While ingesting microplastic may not negatively impact individual mesopelagic fish, the movement of mesopelagic fish from the euphotic zone to deeper waters could mediate transfer of microplastics to otherwise unexposed species and regions of the world's oceans.


Author(s):  
J.-O. Strömberg ◽  
J.I. Spicer ◽  
B. Liljebladh ◽  
M.A. Thomasson

Most krill species undergo diel vertical migration (DVM) which is to some extent influenced by light intensity. During a solar eclipse (11 August 1999) the upward and downward movement of krill, Meganyctiphanes norvegica, inhabiting a Swedish fjord followed closely changes in light intensity. Here the eclipse was partial (77%) and the weather overcast and yet krill at 70–90 m depth were able to detect, and respond to very small changes in light. This observation of an event during mid-day which is not pre-programmed confirms light as an important triggering mechanism for krill DVM.


1995 ◽  
Vol 52 (4) ◽  
pp. 681-689 ◽  
Author(s):  
Peter Andreas Heuch ◽  
Aengus Parsons ◽  
Karin Boxaspen

The vertical distribution of pelagic nauplii and copepodids of the salmon louse Lepeophtheirus salmonis Krøyer was studied in large enclosures in the sea. Copepodids, which infect salmonid hosts, displayed a distinct diel vertical migration pattern. They gathered near the surface during the day, and spread out into deeper layers at night. Nauplii showed only small differences in depth between night and day. Copepodid distribution seems to be controlled by light intensity; no effect of either salinity or temperature was found. This migration pattern, which is the reverse of that of wild salmonids, may increase the number of parasite–host encounters as hosts will swim through populations of sinking (nighttime) and rising (dawn) parasites every 24 h. Because caged salmon feed at the surface during the day, they are likely to be more exposed to infective copepodids than wild fish.


2010 ◽  
Vol 67 (3) ◽  
pp. 473-485 ◽  
Author(s):  
Jason D. Stockwell ◽  
Thomas R. Hrabik ◽  
Olaf P. Jensen ◽  
Daniel L. Yule ◽  
Matthew Balge

Recent studies on Lake Superior suggest that diel vertical migration (DVM) of prey (generalized Coregonus spp.) may be influenced by the density of predatory siscowet ( Salvelinus namaycush ). We empirically evaluated this hypothesis using data from acoustic, midwater trawl, and bottom trawl sampling at eight Lake Superior sites during three seasons in 2005 and a subset of sites in 2006. We expected the larger-bodied cisco ( Coregonus artedi ) to exhibit a shallower DVM compared with the smaller-bodied kiyi ( Coregonus kiyi ). Although DVM of kiyi and cisco were consistent with expectations of DVM as a size-dependent, predator-mediated process, we found no relationship between siscowet density and the magnitude of DVM of either coregonid. Cisco appear to have a size refuge from siscowet predation. Kiyi and siscowet co-occur in demersal habitat > 150 m during the day, where visual predation is unlikely, suggesting predator avoidance is not a factor in the daytime distribution of kiyi. Seasonal patterns of kiyi DVM were consistent with reported DVM of their primary prey Mysis relicta . Our results suggest that consideration of nonvisual foraging, rather than light-based foraging theory (i.e., the antipredation window), is necessary to understand the processes driving DVM in deepwater systems.


2019 ◽  
Vol 86 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Airam Guerra-Marrero ◽  
Vicente Hernández-García ◽  
Airam Sarmiento-Lezcano ◽  
David Jiménez-Alvarado ◽  
Angelo Santana-del Pino ◽  
...  

Abstract Abralia veranyi and Abraliopsis morisii were the most abundant cephalopods caught during epipelagic and mesopelagic surveys off the Canary Islands and accounted for 26% and 35% of the cephalopod catch, respectively. Diel vertical migration patterns were observed in both species. At night, A. veranyi was recorded at depths as shallow as 38–90 m, whereas Abraliopsis morisii occurred at depths of 98–219 m. As individuals grow in mantle length, their diet changes substantially. Abraliopsis morisii showed ontogenetic shifts at 22.9 mm and 35.3 mm dorsal mantle length (DML), while A. veranyi showed ontogenetic shifts at 20.5 mm and 30.9 mm DML. Prior to the first ontogenic shift, both species fed mainly on copepods and mysids. After this shift they fed on larger prey, such as decapods and fish; the diets of larger individuals also contained cephalopods.


2014 ◽  
Vol 281 (1782) ◽  
pp. 20133250 ◽  
Author(s):  
Christoph Effertz ◽  
Eric von Elert

A huge variety of organisms respond to the presence of predators with inducible defences, each of which is associated with costs. Many genotypes have the potential to respond with more than one defence, and it has been argued that it would be maladaptive to exhibit all possible responses at the same time. Here, we test how a well-known anti-fish defence in Daphnia , life-history changes (LHC), is controlled by light. We show that the kairomone-mediated reduction in size at first reproduction is inversely coupled to the light intensity. A similar effect was found for the kairomone-mediated expression of candidate genes in Daphnia . We argue that the light intensity an individual is exposed to determines the degree of LHC, which allows for plastic adjustment to fluctuating environments and simultaneously minimizes the associated costs of multiple alternately deployable defences. It is hypothesized that this allows for a coupling of multiple defences, i.e. LHC and diel vertical migration.


1992 ◽  
Vol 49 (6) ◽  
pp. 1137-1141 ◽  
Author(s):  
Bruce W. Frost ◽  
Stephen M. Bollens

We report results of a 3-yr field study of the vertical distributions and diel vertical migration (DVM) of Pseudocalanus newmani in the central basin of Dabob Bay, Washington, USA. Our results include two novel findings. First, a statistically significant relationship exists between strength of DVM in P. newmani and the potential predation impact of its planktonic invertebrate predators. Second, a strong "normal" DVM (up at night, down during the day), unique for P. newmani in 5 yr of sampling at this locale, occurred at a time when the zooplanktivorous fish Ammodytes hexapterus was unusually abundant and preying on the copepod; this DVM may have been induced by the fish. DVM behavior of P. newmani was highly variable, with changes in behavior commonly occurring on a time scale of weeks; in one case the copepod switched from a normal migration pattern to a reverse migration pattern (down at night, up during the day) in less than 5 wk. These observations, combined with those of previous research, indicate that P. newmani has an exceptionally diverse repertoire of migration behavior, any particular expression of which is most likely manifested by individual copepods exercising phenotypic behavioral plasticity in response to potential predation.


Author(s):  
Ruping Ge ◽  
Hongju Chen ◽  
Guangxing Liu ◽  
Yanzhong Zhu ◽  
Qiang Jiang

In a tank filled with a suspension of indian ink in tap water, a population of Daphnia magna will undergo a complete cycle of vertical migration when an overhead light source is cycli­cally varied in intensity. A ‘dawn rise’ to the surface at low intensity is followed by the descent of the animals to a characteristic maximum depth. The animals rise to the surface again as the light decreases, and finally show a typical midnight sinking. The light intensities at the level of the animals in this experiment are of the same order as those which have been reported in field observations; the time course of the movement also repeats the natural conditions in the field. The process is independent of the duration of the cycle and is related only to the variation in overhead light intensity. At low light intensity the movement of the animal is determined solely by positive photo-kinesis; the dawn rise is a manifestation of this, and is independent of the direction of the light. At high light intensities there is an orientation response which is superimposed upon an alternating positive (photokinetic) phase and a negative phase during which movement is inhibited. The fully oriented animal shows a special type of positive and negative phototaxis, moving towards the light at reduced light intensities and away from it when the light intensity is increased. In this condition it follows a zone of optimum light intensity with some exactness. Experiments show that an animal in this fully oriented condition will respond to the slow changes of intensity characteristic of the diurnal cycle, while being little affected by tran­sient changes of considerable magnitude.


Sign in / Sign up

Export Citation Format

Share Document