Comparisons of fatty acid and stable isotope ratios in symbiotic and non-symbiotic brittlestars from Oban Bay, Scotland

Author(s):  
J. Douglas McKenzie ◽  
Kenneth D. Black ◽  
Maeve S. Kelly ◽  
Lyn C. Newton ◽  
Linda L. Handley ◽  
...  

The bed-forming brittlestars Ophiothrix fragilis, Ophiocomina nigra and Amphiura chiajei from Oban Bay, Scotland were studied using methods previously employed to study chemoautotrophic symbioses. Ophiothrix fragilis and A. chiajei both contain symbiotic bacteria (SCB) while Ophiocomina nigra is non-symbiotic. Samples were taken of Ophiothrix fragilis at approximately two-week intervals for one year. Symbiotic bacteria numbers were determined by direct counting of homogenates of the arms of 50 individual brittlestars. Water samples were analysed for chlorophyll content. Stable isotope ratios for carbon and nitrogen were determined for each homogenate sample. Regular SCB counts were made on the infaunal brittlestar A. chiajei. Homogenate samples of Ophiothrix fragilis, A. chiajei and the non-symbiotic Ophiocomina nigra were analysed to produce fatty acid profiles for each species. Symbiotic bacteria count varied by up to one order of magnitude in both Ophiothrix fragilis and A. chiajei with no evidence of seasonality in this variation. Symbiotic bacteria number was inversely correlated with δ15N but no relationship was established with δ13C. 16:1ω7 and 18:1.ω7 fatty acids were used as putative bacterial markers. Both symbiotic species had higher percentages of 16:1ω7 than the non-symbiotic Ophiocomina nigra. However, only Ophiothrix fragilis appeared to receive appreciable quantities of 18:1ω7 from its SCB. The SCB are heterotrophic and may contribute to the nitrogen budget of the host. The two symbiotic species studied here derive the bulk of their nutrition from conventional feeding but SCB make significant, additional contributions.

2020 ◽  
Vol 644 ◽  
pp. 75-89
Author(s):  
T Sakamaki ◽  
K Hayashi ◽  
Y Zheng ◽  
M Fujibayashi ◽  
O Nishimura

The study objective was to clarify how the growth stages of the Pacific oyster Crassostrea gigas affect selective suspension-feeding of particulate organic matter (POM) and the composition of biodeposits. A day-long (22 h), continuous-flow mesocosm experiment was conducted with 3, 15, and 27 mo old oysters. The suspended particulate matter (PM), settled PM (mostly biodeposits in the oyster mesocosms), and oyster soft tissues were analysed to determine the content of fatty acids, organic carbon, and nitrogen, as well as the carbon and nitrogen stable isotope ratios to trace compositional changes in POM through oyster biodeposition. Regardless of oyster age, the stable isotope ratios of biodeposits were similar to those of the body tissues but not to those of the suspended PM, indicating that oysters selectively fed on assimilable fractions of POM. Compared with the suspended PM, a higher concentration of long-chain polyunsaturated fatty acids was found in the body tissues and, consequently, in the biodeposits; in contrast, the concentrations of shorter-chain fatty acids were generally lower in the biodeposits. Furthermore, the biodeposits produced by the older oysters had higher carbon, nitrogen, and fatty acid contents compared with the biodeposits produced by the 3 mo old oysters. The oxygen consumption rate of biodeposits was positively related to organic carbon content, but less so to fatty acid composition. Our findings demonstrate that older oysters not only produce larger amounts of biodeposits, but that these biodeposits have higher organic and fatty acid contents, potentially exhibiting greater effects on biogeochemical and ecological processes in nearby benthic habitats.


Author(s):  
Sosuke Otani ◽  
Sosuke Otani ◽  
Akira Umehara ◽  
Akira Umehara ◽  
Haruka Miyagawa ◽  
...  

Fish yields of Ruditapes philippinarum have been decreased and the resources have not yet recovered. It needs to clarify food sources of R. philippinarum, and relationship between primary and secondary production of it. The purpose on this study is to reveal transfer efficiency from primary producers to R. philippinarum and food sources of R. philippinarum. The field investigation was carried out to quantify biomass of R. philippinarum and primary producers on intertidal sand flat at Zigozen beach in Hiroshima Bay, Japan. In particular, photosynthetic rates of primary producers such as Zostera marina, Ulva sp. and microphytobenthos were determined in laboratory experiments. The carbon and nitrogen stable isotope ratios for R. philippinarum and 8 potential food sources (microphytobenthos, MPOM etc) growing in the tidal flat were also measured. In summer 2015, the primary productions of Z. marina, Ulva sp. and microphytobenthos were estimated to be 70.4 kgC/day, 43.4 kgC/day and 2.2 kgC/day, respectively. Secondary production of R. philippinarum was 0.4 kgC/day. Contribution of microphytobenthos to R. philippinarum as food source was 56-76% on the basis of those carbon and nitrogen stable isotope ratios. Transfer efficiency from microphytobenthos to R. philippinarum was estimated to be 10-14%. It was suggested that microphytobenthos might sustain the high secondary production of R. philippinarum, though the primary production of microphytobenthos was about 1/10 compared to other algae.


2018 ◽  
Vol 33 (6) ◽  
pp. 1089-1089
Author(s):  
Naoto F. Ishikawa ◽  
Hideyuki Doi ◽  
Jacques C. Finlay

Sign in / Sign up

Export Citation Format

Share Document