scholarly journals Cohomological dimension of group schemes

1973 ◽  
Vol 52 ◽  
pp. 47-52 ◽  
Author(s):  
Hiroshi Umemura

In Umemura [9], we calculated the invariants algcd (G), p(G), q(G) for a commutative algebraic group G. We remark that all the results hold for a group scheme which is not necessarily commutative.To determine p(G), I cannot succeed in dropping the hypothesis “quasi-projective” but this assumption is satisfied in the characteristic 0 case.

2017 ◽  
Vol 166 (2) ◽  
pp. 297-323
Author(s):  
HAO CHANG ◽  
ROLF FARNSTEINER

AbstractLet be a finite group scheme over an algebraically closed field k of characteristic char(k) = p ≥ 3. In generalisation of the familiar notion from the modular representation theory of finite groups, we define the p-rank rkp() of and determine the structure of those group schemes of p-rank 1, whose linearly reductive radical is trivial. The most difficult case concerns infinitesimal groups of height 1, which correspond to restricted Lie algebras. Our results show that group schemes of p-rank ≤ 1 are closely related to those being of finite or domestic representation type.


2019 ◽  
Vol 19 (3) ◽  
pp. 381-388
Author(s):  
Indranil Biswas ◽  
Ugo Bruzzo ◽  
Sudarshan Gurjar

Abstract Relying on a notion of “numerical effectiveness” for Higgs bundles, we show that the category of “numerically flat” Higgs vector bundles on a smooth projective variety X is a Tannakian category. We introduce the associated group scheme, that we call the “Higgs fundamental group scheme of X,” and show that its properties are related to a conjecture about the vanishing of the Chern classes of numerically flat Higgs vector bundles.


Author(s):  
Isamu Iwanari

AbstractIn this paper we begin studying tannakian constructions in ∞-categories and combine them with the theory of motivic categories developed by Hanamura, Levine, and Voevodsky. This paper is the first in a series of papers. For the purposes above, we first construct a derived affine group scheme and its representation category from a symmetric monoidal ∞-category, which we shall call the tannakization of a symmetric monoidal ∞-category. It can be viewed as an ∞-categorical generalization of work of Joyal-Street and Nori. Next we apply it to the stable ∞-category of mixed motives equipped with the realization functor of a mixed Weil cohomology. We construct a derived motivic Galois group which represents the automorphism group of the realization functor, and whose representation category satisfies an appropriate universal property. As a consequence, we construct an underived motivic Galois group of mixed motives, which is a pro-algebraic group and has nice properties. Also, we present basic properties of derived affine group schemes in the Appendix.


2008 ◽  
Vol 190 ◽  
pp. 129-181 ◽  
Author(s):  
George J. McNinch

Let F be an algebraically closed field and let G be a semisimple F-algebraic group for which the characteristic of F is very good. If X ∈ Lie(G) = Lie(G)(F) is a nilpotent element in the Lie algebra of G, and if C is the centralizer in G of X, we show that (i) the root datum of a Levi factor of C, and (ii) the component group C/C° both depend only on the Bala-Carter label of X; i.e. both are independent of very good characteristic. The result in case (ii) depends on the known case when G is (simple and) of adjoint type.The proofs are achieved by studying the centralizer of a nilpotent section X in the Lie algebra of a suitable semisimple group scheme over a Noetherian, normal, local ring . When the centralizer of X is equidimensional on Spec(), a crucial result is that locally in the étale topology there is a smooth -subgroup scheme L of such that Lt is a Levi factor of for each t ∈ Spec ().


2011 ◽  
Vol 09 (03) ◽  
pp. 1005-1017
Author(s):  
R. SUFIANI ◽  
S. NAMI ◽  
M. GOLMOHAMMADI ◽  
M. A. JAFARIZADEH

Continuous-time quantum walks (CTQW) over finite group schemes is investigated, where it is shown that some properties of a CTQW over a group scheme defined on a finite group G induces a CTQW over group scheme defined on G/H, where H is a normal subgroup of G with prime index. This reduction can be helpful in analyzing CTQW on underlying graphs of group schemes. Even though this claim is proved for normal subgroups with prime index (using the Clifford's theorem from representation theory), it is checked in some examples that for other normal subgroups or even non-normal subgroups, the result is also true! It means that CTQW over the graph on G, starting from any arbitrary vertex, is isomorphic to the CTQW over the quotient graph on G/H if we take the sum of the amplitudes corresponding to the vertices belonging to the same cosets.


2019 ◽  
Vol Volume 3 ◽  
Author(s):  
Matthieu ROMAGNY ◽  
Dajano Tossici

International audience We provide an equivalence between the category of affine, smooth group schemes over the ring of generalized dual numbers $k[I]$, and the category of extensions of the form $1 \to \text{Lie}(G, I) \to E \to G \to 1$ where G is an affine, smooth group scheme over k. Here k is an arbitrary commutative ring and $k[I] = k \oplus I$ with $I^2 = 0$. The equivalence is given by Weil restriction, and we provide a quasi-inverse which we call Weil extension. It is compatible with the exact structures and the $\mathbb{O}_k$-module stack structures on both categories. Our constructions rely on the use of the group algebra scheme of an affine group scheme; we introduce this object and establish its main properties. As an application, we establish a Dieudonné classification for smooth, commutative, unipotent group schemes over $k[I]$. Nous construisons une équivalence entre la catégorie des schémas en groupes affines et lisses sur l'anneau des nombres duaux généralisés k[I], et la catégorie des extensions de la forme 1 → Lie(G, I) → E → G → 1 où G est un schéma en groupes affine, lisse sur k. Ici k est un anneau commutatif arbitraire et k[I] = k ⊕ I avec I 2 = 0. L'équivalence est donnée par la restriction de Weil, et nous construisons un foncteur quasi-inverse explicite que nous appelons extension de Weil. Ces foncteurs sont compatibles avec les structures exactes et avec les structures de champs en O k-modules des deux catégories. Nos constructions s'appuient sur le schéma en algèbres de groupe d'un schéma en groupes affines, que nous introduisons et dont nous donnons les propriétés principales. En application, nous donnons une classification de Dieudonné pour les schémas en groupes commutatifs, lisses, unipotents sur k[I] lorsque k est un corps parfait.


2018 ◽  
Vol 30 (6) ◽  
pp. 1487-1520 ◽  
Author(s):  
Sungmun Cho

Abstract This paper is the complementary work of [S. Cho, Group schemes and local densities of ramified hermitian lattices in residue characteristic 2: Part I, Algebra Number Theory 10 2016, 3, 451–532]. Ramified quadratic extensions {E/F} , where F is a finite unramified field extension of {\mathbb{Q}_{2}} , fall into two cases that we call Case 1 and Case 2. In our previous work, we obtained the local density formula for a ramified hermitian lattice in Case 1. In this paper, we obtain the local density formula for the remaining Case 2, by constructing a smooth integral group scheme model for an appropriate unitary group. Consequently, this paper, combined with [W. T. Gan and J.-K. Yu, Group schemes and local densities, Duke Math. J. 105 2000, 3, 497–524] and our previous work, allows the computation of the mass formula for any hermitian lattice {(L,H)} , when a base field is unramified over {\mathbb{Q}} at a prime {(2)} .


2014 ◽  
Vol 151 (5) ◽  
pp. 793-827 ◽  
Author(s):  
Sungmun Cho

The celebrated Smith–Minkowski–Siegel mass formula expresses the mass of a quadratic lattice $(L,Q)$ as a product of local factors, called the local densities of $(L,Q)$. This mass formula is an essential tool for the classification of integral quadratic lattices. In this paper, we will describe the local density formula explicitly by observing the existence of a smooth affine group scheme $\underline{G}$ over $\mathbb{Z}_{2}$ with generic fiber $\text{Aut}_{\mathbb{Q}_{2}}(L,Q)$, which satisfies $\underline{G}(\mathbb{Z}_{2})=\text{Aut}_{\mathbb{Z}_{2}}(L,Q)$. Our method works for any unramified finite extension of $\mathbb{Q}_{2}$. Therefore, we give a long awaited proof for the local density formula of Conway and Sloane and discover its generalization to unramified finite extensions of $\mathbb{Q}_{2}$. As an example, we give the mass formula for the integral quadratic form $Q_{n}(x_{1},\dots ,x_{n})=x_{1}^{2}+\cdots +x_{n}^{2}$ associated to a number field $k$ which is totally real and such that the ideal $(2)$ is unramified over $k$.


Sign in / Sign up

Export Citation Format

Share Document