Role of the nematode surface coat in the adhesion of Clavibacter sp. to Anguina funesta and Anguina tritici

Parasitology ◽  
1991 ◽  
Vol 103 (3) ◽  
pp. 421-427 ◽  
Author(s):  
M. A. McClure ◽  
Y. Spiegel

Clavibacter sp. (syn. Corynebacterium rathayi) adhered to both Anguina funesta (syn. Anguina agrostis) and Anguina tritici, but differences in the nature of adhesion were noted. Similar patterns of binding of the bacteria and of anti-wheat germ agglutinin antibody initially led us to believe that the mechanism of bacterial adhesion was related to the presence of wheat-germ agglutinin (WGA) on the outer cuticle of both species of nematodes and its complementary carbohydrate on the bacterial capsule. However, treatment of either species of nematode with sodium metaperiodate inhibited bacterial adhesion but not the binding of anti-WGA antibody. Bacterial adhesion, therefore, is not mediated by WGA on the nematodes' surface. Moreover, differences in patterns of bacterial adhesion to Anguina species, both before and after treatments with NaCl and detergents, suggest basic interspecific differences in the nature of adhesion. Electron microscopy confirmed the contribution of the nematodes' cuticular surface coat (SC) to the process of adhesion, but it is still not clear how the SC interacts with the bacterial capsule or which of its components are involved. While complete removal of the SC with periodate prevented bacterial adhesion, juveniles that naturally resisted bacterial adhesion did not lack a SC. One explanation could be that the SC of individuals, to which bacteria do not adhere naturally, lacks crucial components that cannot be defined by conventional EM.

2014 ◽  
Vol 52 (12) ◽  
pp. 1020-1024 ◽  
Author(s):  
Jian Zhang ◽  
Liyuan Meng ◽  
Yuanyuan Cao ◽  
Huiping Chang ◽  
Zhongyou Ma ◽  
...  

2007 ◽  
Vol 75 (10) ◽  
pp. 4728-4742 ◽  
Author(s):  
Kristi L. Frank ◽  
Robin Patel

ABSTRACT Staphylococcus lugdunensis is a pathogen of heightened virulence that causes infections resembling those caused by Staphylococcus aureus rather than those caused by its coagulase-negative staphylococcal counterparts. Many types of S. lugdunensis infection, including native valve endocarditis, prosthetic joint infection, and intravascular catheter-related infection, are associated with biofilm etiology. Poly-N-acetylglucosamine (PNAG), a polysaccharide synthesized by products of the icaADBC locus, is a common mechanism of intercellular adhesion in staphylococcal biofilms. Here we report the characterization of ica homologues and the in vitro biofilm formation properties of a collection of S. lugdunensis clinical isolates. Isolates formed biofilms in microtiter wells to various degrees. Biofilm formation by most isolates was enhanced with glucose but diminished by sodium chloride or ethanol. icaADBC homologues were found in all S. lugdunensis isolates tested, although the locus organization differed substantially from that of other staphylococcal ica loci. icaR was not detected in S. lugdunensis, but a novel open reading frame with putative glycosyl hydrolase function is located upstream of the ica locus. icaADBC sequence heterogeneity did not explain the variability in biofilm formation among isolates. PNAG was not detected in S. lugdunensis extracts by immunoblotting with an anti-deacetylated PNAG antibody or wheat germ agglutinin. Confocal microscopy with fluorescently labeled wheat germ agglutinin showed a paucity of PNAG in S. lugdunensis biofilms, but abundant extracellular protein was visualized with SYPRO Ruby staining. Biofilms were resistant to detachment by dispersin B and sodium metaperiodate but were susceptible to detachment by proteases. Despite the genetic presence of icaADBC homologues in S. lugdunensis isolates, PNAG is not a major component of the extracellular matrix of in vitro biofilms formed by this species. Our data suggest that the S. lugdunensis biofilm matrix contains proteinaceous factors.


Blood ◽  
1984 ◽  
Vol 63 (1) ◽  
pp. 181-187
Author(s):  
P Ganguly ◽  
NG Fossett

Sialic acid is believed to play a critical role in the survival of blood platelets in circulation. Wheat germ agglutinin, which shows specificity for sialic acid, N-acetylglucosamine, and N- acetylgalactosamine, strongly activates platelets. The role of sialic acid in platelet activation by this lectin was studied utilizing neuraminidase-treated platelets and the succinylated lectin that has been reported not to recognize sialic acid. The succinylated lectin had a dimeric structure similar to the native lectin, but migrated more slowly in gel electrophoresis. The modified lectin bound to about 2.8 X 10(5) sites/cell, with an apparent dissociation constant of 2 microM compared to 5 X 10(5) sites/cell and a dissociation constant of 0.4 microM for the native lectin. The succinylated lectin neither aggregated nor agglutinated platelets, but agglutination of red cells in microtiter plates was normal. Aggregation of platelets by either wheat germ agglutinin or ristocetin was not affected by the succinylated lectin. Since the native wheat germ agglutinin is a strong activator of platelets and the succinylated derivative was devoid of all activity, it appears that a sialoprotein acts as the biologic receptor of wheat germ agglutinin in human platelets. This suggestion was strengthened by the observation that platelets treated with different concentrations of neuraminidase had a decreased capacity to bind this lectin. These platelets also showed reduced aggregation and serotonin secretion when activated with the native lectin. Since sialic acid has been implicated in the removal of platelets from circulation, wheat germ agglutinin may prove to be a useful tool to explore those clinical conditions in which platelet survival is shortened.


1987 ◽  
Vol 241 (2) ◽  
pp. 513-520 ◽  
Author(s):  
S M Gokhale ◽  
N G Mehta

Vesicles and cell remnants have been obtained by aging of erythrocytes in vitro. The vesicles lacking the membrane skeletal proteins and the remnants known to possess a rigid skeleton have been used to assess the role of membrane skeletal proteins in the process of Con A (concanavalin A)-mediated agglutination of erythrocytes. Both the vesicles and the remnants were found to bind Con A at the same density as did intact cells. The vesicles, isolated from normal as well as from the Con A-agglutinable trypsin- and Pronase-treated cells, failed to agglutinate with Con A. They were, however, well agglutinated by WGA (wheat-germ agglutinin) and RCA [Ricinus communis (castor bean) agglutinin], indicating that the vesicles are not defective in agglutination. Large, cytoskeleton-free, vesicles prepared by another procedure also gave the same results. The aged remnants from trypsin- and Pronase-treated erythrocytes showed significantly decreased agglutination with Con A, but were agglutinated as well as the fresh cells by WGA and RCA. The agglutination with Con A is thus abolished when the membrane skeleton is absent, and reduced when it is rigid, suggesting that the skeleton may play an important role in the agglutination of erythrocytes by Con A.


Sign in / Sign up

Export Citation Format

Share Document