Hydrogen peroxide is the most toxic oxygen species for Onchocerca cervicalis microfilariae

Parasitology ◽  
1990 ◽  
Vol 100 (3) ◽  
pp. 407-415 ◽  
Author(s):  
H. L. Callahan ◽  
R. K. Chouch ◽  
E. R. James

SUMMARYThe toxicity of the active oxygen species hydrogen peroxide, superoxide radical, hydroxyl radical and singlet oxygen to microfilariae (mf) has been studied in vitro, using active oxygen-generating systems and scavengers/inhibitors. Mf viability was monitored by uptake of the radiolabel, [3H]2-deoxy-D-glouse. Hydrogen peroxide and singlet oxygen, but not superoxide radical or hydroxyl radical, are toxic for mf. Hydrogen peroxide was toxic for mf within 2 h at concentrations as low as 5 ¼, an amount eosinophils have been shown to release in vitro (Weiss et al. 1986). Catalase and thiourea, but not inactivated catalase, superoxide dismutase (SOD), singlet oxygen scavengers, or hydroxyl radical scavengers, protected mf. Mf have relatively high levels of endogenous SOD but no measurable glutathione peroxidase and low levels of catalase when compared with other parasites (Callahan, Crouch & James, 1988). The low levels of hydrogen peroxide-scavenging enzymes correlate well with mf sensitivity to hydrogen peroxide and the protective effect of exogenous catalase.

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 455E-455
Author(s):  
Shiow Y. Wang ◽  
Hongjun Jiao

The effect of blackberries (Rubus sp.) genotypes on antioxidant activities against superoxide radicals (O2–), hydrogen peroxide (H2O2), hydroxyl radicals (OH), and singlet oxygen (O,), was evaluated. The results were expressed as percent inhibition of active oxygen species production in the presence of fruit juice. The active oxygen radical absorbance capacity (ORAC) value referred to the net protection in the presence of fruit juice, and was expressed as micromoles of α-tocopherol, ascorbate, α-tocopherol, and β-carotene equivalents per 10 g of fresh weight for O2–, H2O2, OH, and O2, respectively. Among the different cultivars, juice of Hull' blackberry had the highest oxygen species, superoxide radicals (O2–), hydrogen peroxide (H2O2), hydroxyl radicals (OH), and singlet oxygen (O2,) scavenging capacity. Different antioxidants have their functional scavenging capacity against active oxygen species. There were interesting and marked differences among the different antioxidants in their abilities to inhibit the different active oxygen species. β-carotene had by far the highest scavenging activity against O2– but had absolutely no effect on H2O2. Ascorbic acid was the best at inhibiting H2O2 free radical activity. For OH, there was a wide range of scavenging capacities with α-tocopherol the highest and ascorbic acid the lowest. Glutathione had higher O2– scavenging capacity compared to the other antioxidants.


1993 ◽  
Vol 264 (6) ◽  
pp. C1395-C1400 ◽  
Author(s):  
L. E. Costa ◽  
S. Llesuy ◽  
A. Boveris

The spontaneous in situ liver chemiluminescence of female rats submitted to 4,400 m (simulated altitude) for 2 mo and of their corresponding controls at sea level was determined as an approach to the measurement of the intracellular steady-state concentrations of singlet oxygen and oxygen free radicals. Spontaneous liver chemiluminescence was decreased by approximately 40% in hypoxic rats, whereas CCl4-induced chemiluminescence was unchanged. Liver mitochondria isolated from hypoxic rats showed a 53% decreased rate of H2O2 production and an increased content of cytochrome b (36%), with normal content of cytochromes c1, c, and a-a3. Superoxide dismutase showed a 26% decrease in activity, whereas catalase and glutathione peroxidase activities were not significantly decreased by this extent of hypoxia. Cytochrome P-450 and glutathione contents were unchanged. There were no significant differences in the hydroperoxide-initiated chemiluminescence (an estimation of tissue chain-breaker antioxidants) of homogenates, mitochondria, and microsomes. Results suggest that in chronic hypoxia there is a lower rate of generation of active oxygen species in liver, leading to a decreased steady-state concentration of singlet oxygen.


1984 ◽  
Vol 56 (4) ◽  
pp. 900-905 ◽  
Author(s):  
O. Burghuber ◽  
M. M. Mathias ◽  
I. F. McMurtry ◽  
J. T. Reeves ◽  
N. F. Voelkel

Active oxygen species can cause lung injury. Although a direct action on endothelial cells is proposed, the possibility exists that they might cause injury via mediators. We considered that active oxygen species would stimulate the generation of cyclooxygenase metabolites, which then alter pulmonary vasoreactivity and cause edema. We chemically produced hydrogen peroxide by adding glucose oxidase to a plasma- and cell-free, but beta-D-glucose-containing, solution, which perfused isolated rat lungs. Addition of glucose oxidase to the perfusate caused a marked decrease in pulmonary vasoreactivity, accompanied by an increase in the concentrations of prostacyclin, thromboxane A2, and prostaglandin F2 alpha. Pretreatment with catalase, a specific scavenger of hydrogen peroxide, preserved pulmonary vasoreactivity, inhibited the increase of the concentration of the measured prostaglandins, and prevented edema formation. Indomethacin effectively blocked lung prostaglandin production but neither prevented the decrease in vasoreactivity nor inhibited edema formation. From these data we conclude that hydrogen peroxide impaired pulmonary vasoreactivity and subsequently caused edema. Despite the fact that hydrogen peroxide stimulated lung prostaglandin production, cyclooxygenase-derived products neither caused the decrease in vasoreactivity nor the development of edema.


2011 ◽  
Vol 51 (11) ◽  
pp. 877-884
Author(s):  
Valérie Weber ◽  
Pascal Coudert ◽  
Eliane Duroux ◽  
Fernand Leal ◽  
Jacques Couquelet ◽  
...  

Eisei kagaku ◽  
1993 ◽  
Vol 39 (1) ◽  
pp. 56-62
Author(s):  
TERUHISA HIRAYAMA ◽  
YASUO MORI ◽  
JUNKO KANDA ◽  
SATOSHI IKEUCHI ◽  
NORIKO TANAKA ◽  
...  

ChemInform ◽  
2010 ◽  
Vol 33 (10) ◽  
pp. no-no
Author(s):  
Valerie Weber ◽  
Pascal Coudert ◽  
Eliane Duroux ◽  
Fernand Leal ◽  
Jacques Couquelet ◽  
...  

1992 ◽  
Vol 13 (3) ◽  
pp. 333-339 ◽  
Author(s):  
Kimie Sai ◽  
Sadao Uchiyama ◽  
Yasuo Ohno ◽  
Ryuichi Hasegawa ◽  
Yuji Kurokawa

Sign in / Sign up

Export Citation Format

Share Document