A new male-killing parasitism:Spiroplasmabacteria infect the ladybird beetleAnisosticta novemdecimpunctata(Coleoptera: Coccinellidae)

Parasitology ◽  
2006 ◽  
Vol 132 (6) ◽  
pp. 757-765 ◽  
Author(s):  
M. C. TINSLEY ◽  
M. E. N. MAJERUS

Whilst most animals invest equally in males and females when they reproduce, a variety of vertically transmitted parasites has evolved the ability to distort the offspring sex ratios of their hosts. One such group of parasites are male-killing bacteria. Here we report the discovery of females of the ladybirdAnisosticta novemdecimpunctatathat produced highly female-biased offspring sex ratios associated with a 50% reduction in egg hatch rate. This trait was maternally transmitted with high efficiency, was antibiotic sensitive and was infectious following experimental haemolymph injection. We identified the cause as a male-killingSpiroplasmabacterium and phylogenetic analysis of rDNA revealed that it belongs to theSpiroplasma ixodetisclade in which other sex ratio distorters lie. We tested the potential for interspecific horizontal transfer by injection from an infectedA. novemdecimpunctataline into uninfected individuals of the two-spot ladybirdAdalia bipunctata. In this novel host, the bacterium was able to establish infection, transmit vertically and kill male embryos.

2000 ◽  
Vol 23 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Lincoln S. Rocha ◽  
André Luiz P. Perondini

In sciarid flies, the control of sex determination and of the progeny sex ratio is exercised by the parental females, and is based on differential X-chromosome elimination in the initial stages of embryogenesis. In some species, the females produce unisexual progenies (monogenic females) while in others, the progenies consist of males and females (digenic females). The sex ratio of bisexual progenies is variable, and departs considerably from 1:1. Bradysia matogrossensis shows both monogenic and digenic reproduction. In a recently established laboratory strain of this species, 15% of the females were digenic, 10% produced only females, 13% produced only males, and 62% produced progenies with one predominant sex (33% predominantly of female and 29% predominantly male progenies). These progeny sex ratios were maintained in successive generations. Females from female-skewed progenies yielded female- and male-producing daughters in a 1:1 ratio. In contrast, daughters of females from male-skewed progenies produce bisexual or male-skewed progenies. The X-chromosome of B. matogrossensis shows no inversion or other gross aberration. These results suggest that the control of the progeny sex ratio (or differential X-chromosome elimination) involves more than one locus or, at least, more than one pair of alleles. The data also suggest that, in sciarid flies, monogeny and digeny may share a common control mechanism.


2006 ◽  
Vol 2 (4) ◽  
pp. 569-572 ◽  
Author(s):  
Tobias Uller ◽  
Beth Mott ◽  
Gaetano Odierna ◽  
Mats Olsson

Sex ratio evolution relies on genetic variation in either the phenotypic traits that influence sex ratios or sex-determining mechanisms. However, consistent variation among females in offspring sex ratio is rarely investigated. Here, we show that female painted dragons ( Ctenophorus pictus ) have highly repeatable sex ratios among clutches within years. A consistent effect of female identity could represent stable phenotypic differences among females or genetic variation in sex-determining mechanisms. Sex ratios were not correlated with female size, body condition or coloration. Furthermore, sex ratios were not influenced by incubation temperature. However, the variation among females resulted in female-biased mean population sex ratios at hatching both within and among years.


2020 ◽  
Vol 16 (6) ◽  
pp. 20190929
Author(s):  
Renée C. Firman ◽  
Jamie N. Tedeschi ◽  
Francisco Garcia-Gonzalez

Mammal sex allocation research has focused almost exclusively on maternal traits, but it is now apparent that fathers can also influence offspring sex ratios. Parents that produce female offspring under conditions of intense male–male competition can benefit with greater assurance of maximized grand-parentage. Adaptive adjustment in the sperm sex ratio, for example with an increase in the production of X-chromosome bearing sperm (CBS), is one potential paternal mechanism for achieving female-biased sex ratios. Here, we tested this mechanistic hypothesis by varying the risk of male–male competition that male house mice perceived during development, and quantifying sperm sex ratios at sexual maturity. Our analyses revealed that males exposed to a competitive ‘risk’ produced lower proportions of Y-CBS compared to males that matured under ‘no risk’ of competition. We also explored whether testosterone production was linked to sperm sex ratio variation, but found no evidence to support this. We discuss our findings in relation to the adaptive value of sperm sex ratio adjustments and the role of steroid hormones in socially induced sex allocation.


1998 ◽  
Vol 88 (1) ◽  
pp. 37-45 ◽  
Author(s):  
K.M. Heinz

AbstractAn often encountered problem associated with augmentative and inundative biological control programmes is the high cost of producing sufficient numbers of natural enemies necessary to suppress pest populations within the time constraints imposed by ephemeral agroecosystems. In many arrhenotokous parasitoids, overproduction of males in mass-rearing cultures inflates costs (per female) and thus limits the economic feasibility of these biological control programmes. Within the context of existing production technologies, experiments were conducted to determine if the sex ratio ofCatolaccus grandis(Burks), an ectoparasitoid of the boll weevilAnthonomous grandisBoheman, varied as a function of boll weevil larval size. Results from natural and manipulative experiments demonstrate the following behavioural characteristics associated with C.grandissex allocation behaviour: (i) femaleC. grandisoffspring are produced on large size hosts and male offspring are produced on small hosts; (ii) whether a host is considered large or small depends upon the overall distribution of host sizes encountered by a female parasitoid; and (iii) female parasitoids exhibit a greater rate of increase in body size with host size than do male parasitoids. The observed patterns cannot be explained by sex-specific mortality of immature parasitoids developing on the different host size categories. In subsequent experiments, laboratory cultures ofC. grandisexposed daily to successively larger sizes ofA. grandislarvae produced successively greater female biased offspring sex ratios, cultures exposed daily to successively smaller sizes of host larvae produced successively greater male biased offspring sex ratios, and cultures exposed daily to equivalent host size distributions over time maintained a uniform offspring sex ratio. By increasing the average size ofA. grandislarval hosts exposed toC. grandisby 2.5 mg per day in mass rearing cultures, the percentage of male progeny can be reduced from 33% to 23% over a period of four consecutive exposure days.


2013 ◽  
Vol 280 (1772) ◽  
pp. 20132460 ◽  
Author(s):  
Timothy S. Mitchell ◽  
Jessica A. Maciel ◽  
Fredric J. Janzen

Evolutionary theory predicts that dioecious species should produce a balanced primary sex ratio maintained by frequency-dependent selection. Organisms with environmental sex determination, however, are vulnerable to maladaptive sex ratios, because environmental conditions vary spatio-temporally. For reptiles with temperature-dependent sex determination, nest-site choice is a behavioural maternal effect that could respond to sex-ratio selection, as mothers could adjust offspring sex ratios by choosing nest sites that will have particular thermal properties. This theoretical prediction has generated decades of empirical research, yet convincing evidence that sex-ratio selection is influencing nesting behaviours remains absent. Here, we provide the first experimental evidence from nature that sex-ratio selection, rather than only viability selection, is probably an important component of nest-site choice in a reptile with temperature-dependent sex determination. We compare painted turtle ( Chrysemys picta ) neonates from maternally selected nest sites with those from randomly selected nest sites, observing no substantive difference in hatching success or survival, but finding a profound difference in offspring sex ratio in the direction expected based on historical records. Additionally, we leverage long-term data to reconstruct our sex ratio results had the experiment been repeated in multiple years. As predicted by theory, our results suggest that sex-ratio selection has shaped nesting behaviour in ways likely to enhance maternal fitness.


2019 ◽  
Vol 286 (1902) ◽  
pp. 20190345 ◽  
Author(s):  
Aurelio F. Malo ◽  
Tania C. Gilbert ◽  
Philip Riordan

Parent sex ratio allocation has consequences for individual fitness, population dynamics, and conservation. Theory predicts that parents should adjust offspring sex ratio when the fitness returns of producing male or female offspring varies. Previous studies have assumed that only mothers are capable of biasing offspring sex ratios, but have neglected fathers, given the expectation of an equal proportion of X- and Y-chromosome-bearing (CBS) sperm in ejaculates due to sex chromosome segregation at meiosis. This assumption has been recently refuted and both paternal fertility and paternal genetic quality have been shown to bias sex ratios. Here, we simultaneously test the relative contribution of paternal, maternal, and individual genetic quality, as measured by inbreeding, on the probability of being born a son or a daughter, using pedigree and lifelong offspring sex ratio data for the eastern bongo ( Tragelaphus eurycerus isaaci ). Our models showed first, that surprisingly, as individual inbreeding decreases the probability of being born male increases, second, that paternal genetic effects on sex ratio were stronger than maternal genetic effects (which were absent). Furthermore, paternal effects were opposite in sign to those predicted; father inbreeding increases the probability of having sons. Previous paternal effects have been interpreted as adaptive due to sex-specific inbreeding depression for reproductive traits. We argue that in the eastern bongo, the opposite sign of the paternal effect on sex ratios results from a reversed sex-specific inbreeding depression pattern (present for female but not male reproductive traits). We anticipate that this research will help stimulate research on evolutionary constraints to sex ratios. Finally, the results open a new avenue of research to predict sex ratio allocation in an applied conservation context. Future models of sex ratio allocation should also include the predicted inbreeding level of the offspring and paternal inbreeding levels.


1990 ◽  
Vol 38 (2) ◽  
pp. 153 ◽  
Author(s):  
KM Maze ◽  
RDB Whalley

Spinifex sericeus R.Br. is a dioecious, stoloniferous grass which occurs on sand dunes around much of the south-eastern coastline of Australia, New Zealand and New Caledonia. Sex ratios of ramets of S. sericeus and some associated characteristics were studied on the mid-north coast of New South Wales. Generally there was a male bias in the observed ramet sex ratio, although the extent of this bias varied with the beach investigated, the position in the dunes and the time of sampling. Male inflorescences matured and died more rapidly than females, and hence the observed male bias was greatest at the beginning of the flowering period. Male ramets were found to have more sexual tillers per clump than female ramets. The genet sex ratio was estimated from plants grown from seed and separated from each other throughout the experimental period. Males and females were found to be equal in number, although this equality may not be a true reflection of the genet sex ratio in the field.


1970 ◽  
Vol 48 (4) ◽  
pp. 809-811 ◽  
Author(s):  
Raymond P. Canham

In litters of the deer mouse, Peromyscus mamculatus borealis, born in captivity there was a significantly greater number of males than females. In natural populations of the same subspecies, an excess of males caused the sex ratio in captured young of the year to differ significantly from 1:1 only in those summers in which population density increased considerably. The sex ratio did not change appreciably during a winter in which density remained stable, but in winters of low survival the proportion of males declined. A difference between males and females in the amplitude of the fluctuations in postnatal survival thus appeared responsible for variations in the sex ratio.


2016 ◽  
Vol 9 (3) ◽  
pp. 131-138 ◽  
Author(s):  
A.E. Gam ◽  
K.J. Navara

Previous research suggests that environmental and social factors can drive female birds to bias offspring sex ratios. The underlying mechanisms controlling these adjustments remain unclear. Results from experimental and correlative research suggest that maternal corticosterone plays an important role in this process. Since females are the heterogametic sex in birds, corticosterone may potentially bias offspring sex ratios during meiotic segregation, through non-random segregation of sex chromosomes. In a previous study, we showed that pharmacological elevations of corticosterone near the time of meiotic segregation exerted an effect on offspring sex ratio, causing female Zebra Finches ( Taeniopygia guttata) to produce significantly more males. Here, we aimed to determine whether endogenous elevations in the physiological range have similar effects on offspring sex. First we examined offspring sex ratio in relation to baseline corticosterone levels to determine if natural variation in circulating corticosterone near the time of meiotic segregation is related to offspring sex ratio. Next, we used a 5-minute bag handling protocol to induce corticosterone elevations 5 hours prior to ovulation. Maternal baseline corticosterone levels did not correlate with average clutch sex ratios. In addition, the sex ratios produced by females exposed to handling stress did not differ from sex ratios produced by unmanipulated females. Together these results suggest that physiological levels of endogenous corticosterone, both baseline and acutely elevated near the time of sex determination may not be involved in the adjustment of primary sex ratios in Zebra Finches.


1999 ◽  
Vol 77 (4) ◽  
pp. 524-529 ◽  
Author(s):  
Risa D Sargent ◽  
Mary L Reid

Facultative sex ratio manipulation has been examined in a limited number of diploid species, mainly vertebrates. We tested the prediction that mothers would preferentially place males in conditions conducive to large size in the diploid pine engraver bark beetle, Ips pini. In this species, males are the larger sex and therefore male reproductive success was expected to be more dependent on body size than female reproductive success. Because body size is largely environmentally determined in bark beetles, mothers were expected to alter sex ratios in response to habitat quality. Contrary to predictions, offspring sex ratios tended to be more female biased in situations conducive to large offspring size than in situations producing offspring of small size. We were able to rule out nonadaptive explanations such as differential mortality or development times of males and females, suggesting that the observed pattern is adaptive. This study provides a rare example of sex ratio manipulation in diploid insects. However, the unexpected direction of sex ratio biases suggests that daughters gain a yet unknown benefit from being reared in high-quality conditions that surpasses the fitness that would be gained from producing relatively larger sons.


Sign in / Sign up

Export Citation Format

Share Document