Is metal accumulation in Pomphorhynchus laevis dependent on parasite sex or infrapopulation size?

Parasitology ◽  
2010 ◽  
Vol 137 (8) ◽  
pp. 1239-1248 ◽  
Author(s):  
M. NACHEV ◽  
S. ZIMMERMANN ◽  
T. RIGAUD ◽  
B. SURES

SUMMARYConcentrations of the elements As, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, Sn, V, Zn were analysed by inductively coupled plasma mass spectrometry (ICP-MS) in the acanthocephalan Pomphorhynchus laevis and its fish host Barbus barbus. A total of 27 barbels were collected from the Danube River in autumn 2006 close to the town Kozloduy (685 river kilometer) on the Bulgarian river bank. Fish were divided into 3 groups. According to their P. laevis infrapopulation size hosts were considered as heavily infected (>100 worms per fish) and lightly infected (<20 worms per fish). The third group was used to compare heavy metal concentrations between male and female P. laevis. The 5 elements As, Cd, Cu, Pb and Zn were detected in significantly higher concentrations in parasites compared to host tissues (muscle, intestine, liver). According to the calculated mean bioconcentration factors, 3 more elements (Co, Mn, V) showed usually higher concentrations in P. laevis. Comparisons between heavily and lightly infected fish revealed significant differences only for V with higher concentrations for the heavily infected group. Concerning sex-specific metal accumulation V and Zn showed significant differences (V, at P<0·05; Zn, at P=0·05), with higher levels of both metals in females of P. laevis. Our results suggest that – for the metals analysed – the size of the parasite infrapopulation plays no role in the degree of metal accumulation. Similarly, parasite sex seems not to be a crucial factor for metal accumulation in the parasites. Thus, for metal monitoring purposes there is no need to take these aspects into account, which makes the use of parasites as bioindicators more applicable.

Parasitology ◽  
2016 ◽  
Vol 143 (6) ◽  
pp. 794-799 ◽  
Author(s):  
C. COURTNEY-HOGUE

SUMMARYThe accumulation of heavy metals in macroparasites of fish has been widely studied in freshwater environments. Less is known about metal uptake in cestodes parasitizing marine fish. Lacistorhynchus dollfusi is a common larval cestode parasite of Pacific sanddab (Citharichthys sordidus), a flatfish species inhabiting Santa Monica Bay. The ability of this cestode to concentrate metals in its tissues was compared with metal levels in its sanddab host. Fish and cestode tissue were analysed for 14 elements using Inductively Coupled Plasma Mass Spectrometry. The elements analysed were silver (Ag), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), potassium (K), lead (Pb), rubidium (Rb), selenium (Se), strontium (Sr), titanium (Ti) and zinc (Zn). Three of the 14 metals (Cu, Hg and Zn) were significantly greater in concentration in L. dollfusi compared with their levels in the liver, intestine and muscle of their fish host. They ranked in concentration from highest to lowest as follows: Zn > Cu > Hg. The ability of the cestode L. dollfusi to uptake metals at higher concentrations than its host warrants its consideration as a candidate for a heavy metal accumulation indicator of pollution exposure in Pacific sanddab.


2007 ◽  
Vol 59 (4) ◽  
pp. P57-P58 ◽  
Author(s):  
Svetlana Despotovic ◽  
Branka Perendija ◽  
Tijana Kovacevic ◽  
Slavica Borkovic ◽  
S.Z. Pavlovic ◽  
...  

2020 ◽  
Vol 12 (4) ◽  
pp. 1347
Author(s):  
Eun Sang Jung ◽  
Subpiramaniyam Sivakumar ◽  
Sung-Chul Hong ◽  
Pyong-In Yi ◽  
Seong-Ho Jang ◽  
...  

The effect of single (0.1, 1, and 10 mg L−1) and binary mixtures (0.1 + 0.1, 1 + 1, and 10 + 10 mg L−1) of metal-based nanoparticles (CdO and CuO) on the germination of Vigna radiata was studied under two humidity ranges (70% and 80%). Filter paper-based tests were conducted. The surface-sterilized seeds were exposed to CdO and CuO under controlled environmental conditions (70% and 80% humidity at 35 °C). Germination rates were scored after 24 h and 48 h. The accumulation of metals was tested in seedlings after 48 h using inductively coupled plasma mass spectrometry. Compared with 70% humidity, the germination rate was higher under 80% humidity in all tested conditions. The germination rate of the CdO + CuO treatment was less than that of the single metal exposure under both humidities (70% and 80%) at 48 h. By two-way analysis of variance (ANOVA), we found that germination was greatly influenced by humidity. The accumulation of metal was higher in the CuO test than in the CdO test. Metal accumulation was concentration and humidity dependent, except for Cd accumulation in the CdO + CuO treatment. Here we show that the germination of seeds depends on the humidity and concentration of metal oxide nanoparticles. Understanding these strategies in seeds might help to avoid environmental and chemical stress and improve crop yield.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Karolina Sunjog ◽  
Zoran Gačić ◽  
Stoimir Kolarević ◽  
Željka Višnjić-Jeftić ◽  
Ivan Jarić ◽  
...  

The aim of this study was to analyze 16 trace elements (Al, As, B, Ba, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Sr, and Zn) in different barbel (Barbus barbus) tissues and to detect the presence of genotoxic effects in erythrocytes with the alkaline comet assay. Barbel specimens were collected in the Danube river near Belgrade, Serbia, where the discharge of untreated communal and industrial wastewaters is likely to produce negative effects on fish residing in this area. The highest concentrations of Sr, Mn, Fe, Ba, B, and Al were found in gills, Mo and Cu in liver, and As and Zn in gonads. Concentrations of Zn and Fe were above maximum acceptable concentrations (MACs) in a number of gonad, gill, and liver samples. Three-year-old barbel specimens had higher tail moment and Zn concentrations in gills (1.71 and 51.20 μg/g dw, resp.) than 5-year-old specimens (0.85 and 42.51 μg/g dw, resp.). Results indicate that the younger barbel specimens might be more suitable for the monitoring of environmental pollution.


Microplastics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 3-14
Author(s):  
Refilwe Precious Mofokeng ◽  
David Glassom

Once in the environment, preproduction plastic polymers between 2–5 mm in size, also known as pellets, can cause physical harm to animals that mistake them for food as they have been reported to accumulate toxic substances, including on their surface. However, the rate of metal enrichment on pellets is not well investigated. In October 2018, Durban experienced a storm that resulted in ±2000 tons of polyethylene pellets being spilt into Durban Harbour, which caused environmental pollution concerns. This event provided a unique opportunity to study metal accumulation on pellets. Pellets were collected at one-month intervals for 6 months following the spill from October 2017 to March 2018, and metal concentrations were compared to concentrations found on pellets collected before the spill. The pellets were digested using a mixture of concentrated nitric acid (55%) and sulphuric acid (60%) at a ratio of 3:1 and analysed for numerous trace metals (Al, As, Pb, Cd, Cr, Fe, Cu, Mn, Ni, and Zn) using the Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Pellets collected in Durban Harbour prior to the spill in a related study (unpublished data) showed higher metal accumulation; however, there was no evident linear increase in metal concentration in pellets over time. ANOVA showed no significant difference for all metals (p > 0.05) in metal concentration between months; however, there was a significant difference between aged and newly introduced pellets.


Sign in / Sign up

Export Citation Format

Share Document