scholarly journals A new ELISA and western blot technique based on recombinant TES antigen and/or larval antigen for the detection of toxocariasis in humans

Parasitology ◽  
2020 ◽  
pp. 1-8
Author(s):  
Marie-Kristin Raulf ◽  
Daniela Jordan ◽  
Herbert Auer ◽  
Jens M. Warnecke ◽  
Bernd Lepenies ◽  
...  

Abstract Serological antibody detection by enzyme-linked immunosorbent assay (ELISA)- and immunoblot-based methods constitutes the best indicator of human Toxocara infection. Nevertheless, the availability of serological tests, particularly western blots (WB), evaluated for sensitivity and specificity is limited. Therefore, an Anti-Toxocara-ELISA immunoglobulin g (IgG) prototype (Proto-ELISA) and an Anti-Toxocara-Westernblot (IgG) prototype (Proto-WB) were evaluated by testing 541 human sera pre-determined for Toxocara infection by an established in-house Anti-Toxocara-ELISA (IH-ELISA). To evaluate sensitivity and specificity of the newly developed ELISA and WB prototypes, results were compared to IH-ELISA and a commercial WB (Com-WB). Compared to the IH-ELISA, a sensitivity of 93.1% (229/246) and a specificity of 94.6% (279/295) of the Proto-ELISA with a Cohen's κ of 0.88 were obtained. The sensitivity of the Proto-WB was 76.7% (240/313) and specificity was 99.6% (227/228) with a Cohen's κ of 0.73 compared to those of Com-WB. A comparison to the IH-ELISA revealed 91.5% (225/246) sensitivity and 94.6% (279/295) specificity of the Proto-WB with a Cohen's κ of 0.86. Cross-reactivity was observed for some samples positive for Ascaris and Trichinella spp. in the Proto-ELISA, Proto-WB and Com-WB. Overall, the evaluated ELISA and WB prototypes showed high sensitivity and specificity, indicating high reliability of these newly developed tests.

1999 ◽  
Vol 37 (5) ◽  
pp. 1554-1560 ◽  
Author(s):  
Eufrosina S. Umezawa ◽  
Sueli F. Bastos ◽  
Mario E. Camargo ◽  
Luci M. Yamauchi ◽  
Márcia R. Santos ◽  
...  

The commercially available diagnostic tests for Chagas’ disease employ whole extracts or semipurified fractions ofTrypanosoma cruzi epimastigotes. Considerable variation in the reproducibility and reliability of these tests has been reported by different research laboratories, mainly due to cross-reactivity with other pathogens and standardization of the reagents. The use of recombinant antigens for the serodiagnosis of Chagas’ disease is recommended to increase the sensitivity and specificity of serological tests. Expressed in Escherichia coli, as fusion products with glutathione S-transferase, six T. cruzirecombinant antigens (H49, JL7, A13, B13, JL8, and 1F8) were evaluated in an enzyme-linked immunosorbent assay for Chagas’ disease. The study was carried out with a panel of 541 serum samples of chagasic and nonchagasic patients from nine countries of Latin America (Argentina, Bolivia, Brazil, Chile, Colombia, El Salvador, Guatemala, Honduras, and Venezuela). The optimal concentration of each recombinant antigen for coating of plates was determined with the help of125I-labelled recombinant proteins. While the specificity of the epimastigote antigen was 84% because of false positives from leishmaniasis cases, for the recombinant antigens it varied from 96.2 to 99.6%. Recombinant antigens reacted with 79 to 100% of serum samples from chronic chagasic patients. In this way, it is proposed that a mixture of a few T. cruzi recombinant antigens should be employed in a diagnostic kit to minimize individual variation and promote high sensitivity in the diagnosis of Chagas’ disease.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Noemia Nhancupe ◽  
Emilia V. Noormahomed ◽  
Sonia Afonso ◽  
Staffan Svard ◽  
Johan Lindh

Abstract Background Porcine cysticercosis has a negative impact on human health and the meat industry, as it makes infected meat unaproprieted for consuption and it is the main etiology of epileptic seizures in developing countries. There are multiple serological assays that use crude antigens with high sensitivity and specificity for the diagnosis of both porcine and human cysticercosis. Nonetheless, antigen preparation is time-consuming, needs a well-equipped laboratory and trained personnel and places those manipulating the meat at great risk for infection. New serodiagnostic approaches to the diagnosis of porcine and human cysticercosis have been directed towards the development of recombinant deoxyribonucleic acid technology for the generation of synthetic proteins that can serve as simplified, low-cost and harmless substitutes for native antigens. The aim of the present study was to further evaluate the recombinant Tsol-p27 protein as a target molecule in immunoassays for the serodiagnosis of porcine cysticercosis. From these data, we hoped to develop recommendations regarding its use in the serodiagnosis of porcine cysticercosis. Results We studied a panel of 83 naturally infected pig sera from Angónia District, Mozambique, an endemic area for porcine and human cysticercosis. These sera were previously tested by antigen enzyme-linked immunosorbent assay (Ag-ELISA) to detect antigens of T. solium. The serum panel was processed by enzyme-linked immunoelectrotransfer blot (EITB) assay against the recombinant Tsol-p27 protein and the Ag-ELISA assay results were used to compare and evaluate the performance of Tsol-p27 for the diagnosis of cysticercosis. Out of 83 sera, 24 (29.0%) were positive for Tsol-p27 and 59 (71%) were negative in the same assay. From the 37 sera that tested positive to Ag-ELISA, 11 (13.3%) were positive to Tsol-p27, while from 46 sera that tested negative to Ag-ELISA, 33 (39.7%) also tested negative to Tsol-p27. The sensitivity and specificity of Tsol-p27 was 29.7% and 71.7%, respectively, while the positive predictive value and negative predictive value were 45.8% and 55.9%, respectively, as calculated using Medcalc® version 15.0 software (MedCalc Software, Ostend, Belgium). Conclusion While Tsol-p27 recombinant protein might be suitable for testing human sera, its performance in pigs is not acceptable, so other recombinant proteins should be evaluated alone or multiplexed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ilaria Varotto-Boccazzi ◽  
Alessandro Manenti ◽  
Francesca Dapporto ◽  
Louise J. Gourlay ◽  
Beatrice Bisaglia ◽  
...  

To detect and prevent emerging epidemics, discovery platforms are urgently needed, for the rapid development of diagnostic assays. Molecular diagnostic tests for COVID-19 were developed shortly after the isolation of SARS-CoV-2. However, serological tests based on antiviral antibody detection, revealing previous exposure to the virus, required longer testing phases, due to the need to obtain correctly folded and glycosylated antigens. The delay between the identification of a new virus and the development of reliable serodiagnostic tools limits our readiness to tackle future epidemics. We suggest that the protozoan Leishmania tarentolae can be used as an easy-to-handle microfactory for the rapid production of viral antigens to face emerging epidemics. We engineered L. tarentolae to express the SARS-CoV-2 receptor-binding domain (RBD) and we recorded the ability of the purified RBD antigen to detect SARS-CoV-2 infection in human sera, with a sensitivity and reproducibility comparable to that of a reference antigen produced in human cells. This is the first application of an antigen produced in L. tarentolae for the serodiagnosis of a Coronaviridae infection. On the basis of our results, we propose L. tarentolae as an effective system for viral antigen production, even in countries that lack high-technology cell factories.


2020 ◽  
Author(s):  
Beatriz Araujo Oliveira ◽  
Lea Campos de Oliveira ◽  
Franciane Mendes de Oliveira ◽  
Geovana Maria Pereira ◽  
Regina Maia de Souza ◽  
...  

AbstractBackgroundCOVID-19 disease (Coronavirus disease 2019) caused by SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) is widespread worldwide, affecting more than 11 million people globally (July 6th, 2020). Diagnostic techniques have been studied in order to contain the pandemic. Immunochromatographic (IC) assays are feasible and low cost alternative for monitoring the spread of COVID-19 in the population.MethodsHere we evaluate the sensitivity and specificity of eleven different immunochromatographic tests in 98 serum samples from confirmed cases of COVID-19 through RT-PCR and 100 negative serum samples from blood donors collected in February 2019. Considering the endemic situation of Dengue in Brazil, we also evaluated the cross-reactivity with Dengue using 20 serum samples from patients with confirmed diagnosis for Dengue collected in early 2019 through four different tests.ResultsOur results demonstrated agreement between immunochromatographic assays and RT-PCR, especially after 10 days since the onset of symptoms. The evaluation of IgG and IgM antibodies combined demonstrated a strong level of agreement (0.85) of IC assays and RT-PCR. It was observed cross-reactivity between Dengue and COVID-19 using four different IC assays for COVID-19 diagnosis. The specificity of IC assays to detected COVID-19 IgM antibodies using Dengue serum samples varied from 80% to 85%; the specificity of IgG detection was 100% and total antibody was 95%.ConclusionsWe found high sensitivity, specificity and good agreement of IC assays, especially after 10 days onset of symptoms. However, we detected cross-reactivity between Dengue and COVID-19 mainly with IgM antibodies demonstrating the need for better studies about diagnostic techniques for these diseases.HighlightsImmunochromatographic assays demonstrated high sensitivity and specificity and good agreement with the gold-standard RT-PCR;Increase in sensitivity and specificity of assays using samples collected after the 10th day of symptoms;Cross-reaction with Dengue serology in evaluation of IgM.


F1000Research ◽  
2020 ◽  
Vol 8 ◽  
pp. 1875
Author(s):  
Maria del Pilar Martinez Viedma ◽  
Nurgun Kose ◽  
Leda Parham ◽  
Angel Balmaseda ◽  
Guillermina Kuan ◽  
...  

Background: Global outbreaks caused by emerging or re-emerging arthropod-borne viruses (arboviruses) are becoming increasingly more common. These pathogens include the mosquito-borne viruses belonging to the Flavivirus and Alphavirus genera. These viruses often cause non-specific or asymptomatic infection, which can confound viral prevalence studies. In addition, many acute phase diagnostic tests rely on the detection of viral components such as RNA or antigen. Standard serological tests are often not reliable for diagnosis after seroconversion and convalescence due to cross-reactivity among flaviviruses. Methods: In order to contribute to development efforts for mosquito-borne serodiagnostics, we incubated 137 human sera on individual custom peptide arrays that consisted of over 866 unique peptides in quadruplicate. Our bioinformatics workflow to analyze these data incorporated machine learning, statistics, and B-cell epitope prediction. Results: Here we report the results of our peptide array data analysis, which revealed sets of peptides that have diagnostic potential for detecting past exposure to a subset of the tested human pathogens including Zika virus. These peptides were then confirmed using the well-established ELISA method. Conclusions: These array data, and the resulting peptides can be useful in diverse efforts including the development of new pan-flavivirus antibodies, more accurate epitope mapping, and vaccine development against these viral pathogens.


2020 ◽  
Vol 2 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Cigdem Akalan Kuyumcu ◽  
Serpil Erol ◽  
Rıza Adaleti ◽  
Seniha Senbayrak ◽  
Secil Deniz ◽  
...  

Objective: Serological tests are the most commonly used tests in the diagnosis of brucellosis; however, each serological test has some drawbacks. In this study, we aimed to determine the value of the Brucella Coombs gel test (BCGT) in the serological diagnosis of brucellosis in comparison with Standard tube agglutination (STA) and ELISA tests. Materials and Methods: The study included 42 patients who were considered to have brucellosis as a preliminary diagnosis. BCGT, Brucella-IgM/IgG ELISA, and STA tests were performed from serum samples of the patients. The correlation of the diagnostic tests was analyzed using Cohen’s Kappa Analysis.  Results: Twenty-seven (64.2%) of 42 patients were diagnosed with brucellosis according to their medical history and clinical and serological tests. The sensitivity and specificity of BCGT to diagnose brucellosis was 96.2%, and 100%, respectively. The sensitivity and specificity for the diagnosis of brucellosis 62.9% and 100% for STA, respectively; 33.3% and 66.6% for Brucella-IgM; and 66.6% and 100% for Brucella-IgG. BCGT was significantly correlated with STA (κ= 0.590) and Brucella-IgG (κ=0.539) Conclusion: BCGT can be utilized as a simple and reliable test in the diagnosis of brucellosis with high sensitivity and specificity. Nevertheless, the sensitivity and specificity of BCGT should be demonstrated by comprehensive studies, including culture-confirmed cases and control groups.


mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Ronaldo Magtoto ◽  
Korakrit Poonsuk ◽  
David Baum ◽  
Jianqiang Zhang ◽  
Qi Chen ◽  
...  

ABSTRACTThis study compared the performances of three commercial transmissible gastroenteritis virus/porcine respiratory coronavirus (TGEV/PRCV) blocking enzyme-linked immunosorbent assays (ELISAs) using serum samples (n = 528) collected over a 49-day observation period from pigs inoculated with TGEV strain Purdue (n = 12), TGEV strain Miller (n = 12), PRCV (n= 12), or with virus-free culture medium (n = 12). ELISA results were evaluated both with “suspect” results interpreted as positive and then as negative. All commercial kits showed excellent diagnostic specificity (99 to 100%) when testing samples from pigs inoculated with virus-free culture medium. However, analyses revealed differences between the kits in diagnostic sensitivity (percent TGEV- or PRCV-seropositive pigs), and all kits showed significant (P < 0.05) cross-reactivity between TGEV and PRCV serum antibodies, particularly during early stages of the infections. Serologic cross-reactivity between TGEV and PRCV seemed to be TGEV strain dependent, with a higher percentage of PRCV-false-positive results for pigs inoculated with TGEV Purdue than for TGEV Miller. Moreover, the overall proportion of false positives was higher when suspect results were interpreted as positive, regardless of the ELISA kit evaluated.IMPORTANCECurrent measures to prevent TGEV from entering a naive herd include quarantine and testing for TGEV-seronegative animals. However, TGEV serology is complicated due to the cross-reactivity with PRCV, which circulates subclinically in most swine herds worldwide. Conventional serological tests cannot distinguish between TGEV and PRCV antibodies; however, blocking ELISAs using antigen containing a large deletion in the amino terminus of the PRCV S protein permit differentiation of PRCV and TGEV antibodies. Several commercial TGEV/PRCV blocking ELISAs are available, but performance comparisons have not been reported in recent research. This study demonstrates that the serologic cross-reactivity between TGEV and PRCV affects the accuracy of commercial blocking ELISAs. Individual test results must be interpreted with caution, particularly in the event of suspect results. Therefore, commercial TGEV/PRCV blocking ELISAs should only be applied on a herd basis.


2015 ◽  
Vol 24 (1) ◽  
pp. 92-94 ◽  
Author(s):  
Ivete Lopes de Mendonça ◽  
Joilson Ferreira Batista ◽  
Leucio Camara Alves

Canine visceral leishmaniasis (CVL) is difficult to diagnosis, mainly due to the presence of asymptomatic animals, the diversity of clinical symptoms and the difficulty in obtaining diagnostic evidence of high sensitivity and specificity. The purpose of this study was to diagnose CVL in urinary sediment of 70 dogs of different breeds, sexes and ages from the veterinary hospital of the Federal University of Piauí and Zoonosis Control Center of Teresina, Brazil. The serological tests were TR DPP® for CVL and enzyme-linked immunosorbent assay (ELISA) for CVL, parasitological exams of bone marrow and lymph nodes and urine sediment cultures. Leishmania was detected in the bone marrow and/or lymph node of 61.0% of the animals (43/70), and urine sediment culture was positive in 9.30% (4/43) of these animals. In the serological exams, 70.0% (49/70) were reactive using the DPP and 78.2% (55/70) were reactive using ELISA. The goal of this study was to diagnose the presence of L. (infantum) chagasi in a culture of urinary sediment.


2003 ◽  
Vol 10 (4) ◽  
pp. 710-714 ◽  
Author(s):  
Janchivdorj Erdenebaatar ◽  
Balgan Bayarsaikhan ◽  
Masahisa Watarai ◽  
Sou-ichi Makino ◽  
Toshikazu Shirahata

ABSTRACT Enzyme-linked immunosorbent assays using antigens extracted from Brucella abortus with n-lauroylsarcosine differentiated natural Brucella-infected animals from Brucella-vaccinated or Yersinia enterocolitica O9-infected animals. A field trial in Mongolia showed cattle, sheep, goat, reindeer, camel, and human sera without infection could be distinguished from Brucella-infected animals by conventional serological tests.


Author(s):  
Asier Basurco ◽  
Alda Natale ◽  
Katia Capello ◽  
Antonio Fernández ◽  
María Teresa Verde ◽  
...  

Abstract Canine leishmaniasis (CanL) is a disease caused by Leishmania infantum. Serological methods are the most common diagnostic techniques used for the diagnosis of the CanL. The objective of our study was to estimate the sensitivity and specificity of one in-house ELISA kit (ELISA UNIZAR) and three commercially available serological tests (MEGACOR Diagnostik GmbH) including an immunochromatographic rapid test (FASTest LEISH®), an immunofluorescent antibody test (MegaFLUO LEISH®) and an enzyme-linked immunosorbent assay (MegaELISA LEISH®), using latent class models in a Bayesian analysis. Two hundred fifteen serum samples were included. The highest sensitivity was achieved for FASTest LEISH® (99.38%), ELISA UNIZAR (99.37%), MegaFLUO LEISH® (99.36%) followed by MegaELISA LEISH® (98.49%). The best specificity was obtained by FASTest LEISH® (98.43%), followed by ELISA UNIZAR (97.50%), whilst MegaFLUO LEISH® and MegaELISA LEISH® obtained the lower specificity (91.94% and 91.93%, respectively). The results of present study indicate that the immunochromatographic rapid test evaluated FASTest LEISH® show similar levels of sensitivity and specificity to the quantitative commercial tests. Among quantitative serological tests, sensitivity and specificity were similar considering ELISA or IFAT techniques.


Sign in / Sign up

Export Citation Format

Share Document