CCD detectors in high-resolution biological electron microscopy

2000 ◽  
Vol 33 (1) ◽  
pp. 1-27 ◽  
Author(s):  
A. R. Faruqi ◽  
Sriram Subramaniam

1. Introduction 11.1 The ‘band gap’ in silicon 22. Principles of CCD detector operation 32.1 Direct detection 32.2 Electron energy conversion into light 42.3 Optical coupling: lens or fibre optics? 62.4 Readout speed and comparison with film 83. Practical considerations for electron microscopic applications 93.1 Sources of noise 93.1.1 Dark current noise 93.1.2 Readout noise 93.1.3 Spurious events due to X-rays or cosmic rays 103.2 Efficiency of detection 113.3 Spatial resolution and modulation transfer function 123.4 Interface to electron microscope 143.5 Electron diffraction applications 154. Prospects for high-resolution imaging with CCD detectors 185. Alternative technologies for electronic detection 235.1 Image plates 235.2 Hybrid pixel detectors 246. References 26During the past decade charge-coupled device (CCD) detectors have increasingly become the preferred choice of medium for recording data in the electron microscope. The CCD detector itself can be likened to a new type of television camera with superior properties, which makes it an ideal detector for recording very low exposure images. The success of CCD detectors for electron microscopy, however, also relies on a number of other factors, which include its fast response, low noise electronics, the ease of interfacing them to the electron microscope, and the improvements in computing that have made possible the storage and processing of large images.CCD detectors have already begun to be routinely used in a number of important biological applications such as tomography of cellular organelles (reviewed by Baumeister, 1999), where the resolution requirements are relatively modest. However, in most high- resolution microscopic applications, especially where the goal of the microscopy is to obtain structural information at near-atomic resolution, photographic film has continued to remain the medium of choice. With the increasing interest and demand for high-throughput structure determination of important macromolecular assemblies, it is clearly important to have tools for electronic data collection that bypass the slow and tedious process of processing images recorded on photographic film.In this review, we present an analysis of the potential of CCD-based detectors to fully replace photographic film for high-resolution electron crystallographic applications.

2016 ◽  
Vol 23 (1) ◽  
pp. 214-218 ◽  
Author(s):  
G. Bortel ◽  
G. Faigel ◽  
M. Tegze ◽  
A. Chumakov

Kossel line patterns contain information on the crystalline structure, such as the magnitude and the phase of Bragg reflections. For technical reasons, most of these patterns are obtained using electron beam excitation, which leads to surface sensitivity that limits the spatial extent of the structural information. To obtain the atomic structure in bulk volumes, X-rays should be used as the excitation radiation. However, there are technical problems, such as the need for high resolution, low noise, large dynamic range, photon counting, two-dimensional pixel detectors and the small spot size of the exciting beam, which have prevented the widespread use of Kossel pattern analysis. Here, an experimental setup is described, which can be used for the measurement of Kossel patterns in a reasonable time and with high resolution to recover structural information.


Author(s):  
D. Van Dyck

An (electron) microscope can be considered as a communication channel that transfers structural information between an object and an observer. In electron microscopy this information is carried by electrons. According to the theory of Shannon the maximal information rate (or capacity) of a communication channel is given by C = B log2 (1 + S/N) bits/sec., where B is the band width, and S and N the average signal power, respectively noise power at the output. We will now apply to study the information transfer in an electron microscope. For simplicity we will assume the object and the image to be onedimensional (the results can straightforwardly be generalized). An imaging device can be characterized by its transfer function, which describes the magnitude with which a spatial frequency g is transferred through the device, n is the noise. Usually, the resolution of the instrument ᑭ is defined from the cut-off 1/ᑭ beyond which no spadal information is transferred.


Author(s):  
J. P. Langmore ◽  
N. R. Cozzarelli ◽  
A. V. Crewe

A system has been developed to allow highly specific derivatization of the thymine bases of DNA with mercurial compounds wich should be visible in the high resolution scanning electron microscope. Three problems must be completely solved before this staining system will be useful for base sequencing by electron microscopy: 1) the staining must be shown to be highly specific for one base, 2) the stained DNA must remain intact in a high vacuum on a thin support film suitable for microscopy, 3) the arrangement of heavy atoms on the DNA must be determined by the elastic scattering of electrons in the microscope without loss or large movement of heavy atoms.


Author(s):  
David Joy ◽  
James Pawley

The scanning electron microscope (SEM) builds up an image by sampling contiguous sub-volumes near the surface of the specimen. A fine electron beam selectively excites each sub-volume and then the intensity of some resulting signal is measured. The spatial resolution of images made using such a process is limited by at least three factors. Two of these determine the size of the interaction volume: the size of the electron probe and the extent to which detectable signal is excited from locations remote from the beam impact point. A third limitation emerges from the fact that the probing beam is composed of a finite number of discrete particles and therefore that the accuracy with which any detectable signal can be measured is limited by Poisson statistics applied to this number (or to the number of events actually detected if this is smaller).


Author(s):  
Ya Chen ◽  
Geoffrey Letchworth ◽  
John White

Low-temperature high-resolution scanning electron microscopy (cryo-HRSEM) has been successfully utilized to image biological macromolecular complexes at nanometer resolution. Recently, imaging of individual viral particles such as reovirus using cryo-HRSEM or simian virus (SIV) using HRSEM, HV-STEM and AFM have been reported. Although conventional electron microscopy (e.g., negative staining, replica, embedding and section), or cryo-TEM technique are widely used in studying of the architectures of viral particles, scanning electron microscopy presents two major advantages. First, secondary electron signal of SEM represents mostly surface topographic features. The topographic details of a biological assembly can be viewed directly and will not be obscured by signals from the opposite surface or from internal structures. Second, SEM may produce high contrast and signal-to-noise ratio images. As a result of this important feature, it is capable of visualizing not only individual virus particles, but also asymmetric or flexible structures. The 2-3 nm resolution obtained using high resolution cryo-SEM made it possible to provide useful surface structural information of macromolecule complexes within cells and tissues. In this study, cryo-HRSEM is utilized to visualize the distribution of glycoproteins of a herpesvirus.


Author(s):  
J.M. Howe ◽  
R. Gronsky

The technique of high-resolution electron microscopy (HREM) is invaluable to the materials scientist because it allows examination of microstructural features at levels of resolution that are unobtainable by most other methods. Although the structural information which can be determined by HREM and accompanying image simulations has been well documented in the literature, there have only been a few cases where this technique has been used to reveal the chemistry of individual columns or planes of atoms, as occur in segregated and ordered materials.


1987 ◽  
Vol 111 ◽  
Author(s):  
D. R. Acosta ◽  
O. Guzman ◽  
P. Del Angel ◽  
J. Dominguez

High resolution electron microscopy has proven to be a powerful technique to determine structural characteristics of zeolites (l–2),symmetry variations and identification of several kind of defects.Together with ideal projected potential images, the microscopist usually finds in electron micrographs the influence of electro-optical parameters and alterations of the crystallinity of the material under electron irradiation. One of the purposes of this workis to contributetothe understanding of the degradation process of zeolites under electron irradiation in the electron microscope and in this way, discriminate when it is possible, what is reliable information recorded in the images obtained in high resolution conditions.


Author(s):  
R. Csencsits

High resolution electron microscopy (HREM) is a valuable technique for studying catalytic zeolite systems because it gives direct information about the structure and defects present in the structure. The difficulty with doing an HREM study on zeolites is that they become amorphous under electron irradiation. This work is a systematic investigation of the damage of Y zeolites in the transmission electron microscope (TEM); the goals of this study are to determine the mechanism for electron damage and to access the effects of damage in Y zeolites on their HREM images using computer simulation.


Sign in / Sign up

Export Citation Format

Share Document