scholarly journals Quantum entanglement: facts and fiction – how wrong was Einstein after all?

Author(s):  
Bengt Nordén

AbstractEinstein was wrong with his 1927 Solvay Conference claim that quantum mechanics is incomplete and incapable of describing diffraction of single particles. However, the Einstein-Podolsky-Rosen paradox of entangled pairs of particles remains lurking with its ‘spooky action at a distance’. In molecules quantum entanglement can be viewed as basis of both chemical bonding and excitonic states. The latter are important in many biophysical contexts and involve coupling between subsystems in which virtual excitations lead to eigenstates of the total Hamiltonian, but not for the separate subsystems. The author questions whether atomic or photonic systems may be probed to prove that particles or photons may stay entangled over large distances and display the immediate communication with each other that so concerned Einstein. A dissociating hydrogen molecule is taken as a model of a zero-spin entangled system whose angular momenta are in principle possible to probe for this purpose. In practice, however, spins randomize as a result of interactions with surrounding fields and matter. Similarly, no experiment seems yet to provide unambiguous evidence of remaining entanglement between single photons at large separations in absence of mutual interaction, or about immediate (superluminal) communication. This forces us to reflect again on what Einstein really had in mind with the paradox, viz. a probabilistic interpretation of a wave function for an ensemble of identically prepared states, rather than as a statement about single particles. Such a prepared state of many particles would lack properties of quantum entanglement that make it so special, including the uncertainty upon which safe quantum communication is assumed to rest. An example is Zewail's experiment showing visible resonance in the dissociation of a coherently vibrating ensemble of NaI molecules apparently violating the uncertainty principle. Einstein was wrong about diffracting single photons where space-like anti-bunching observations have proven recently their non-local character and how observation in one point can remotely affect the outcome in other points. By contrast, long range photon entanglement with immediate, superluminal response is still an elusive, possibly partly misunderstood issue. The author proposes that photons may entangle over large distances only if some interaction exists via fields that cannot propagate faster than the speed of light. An experiment to settle this ‘interaction hypothesis’ is suggested.

Author(s):  
Richard Healey

Quantum entanglement is popularly believed to give rise to spooky action at a distance of a kind that Einstein decisively rejected. Indeed, important recent experiments on systems assigned entangled states have been claimed to refute Einstein by exhibiting such spooky action. After reviewing two considerations in favor of this view I argue that quantum theory can be used to explain puzzling correlations correctly predicted by assignment of entangled quantum states with no such instantaneous action at a distance. We owe both considerations in favor of the view to arguments of John Bell. I present simplified forms of these arguments as well as a game that provides insight into the situation. The argument I give in response turns on a prescriptive view of quantum states that differs both from Dirac’s (as stated in Chapter 2) and Einstein’s.


2017 ◽  
Vol 19 (12) ◽  
pp. 124002 ◽  
Author(s):  
Chenglong You ◽  
Sushovit Adhikari ◽  
Yuxi Chi ◽  
Margarite L LaBorde ◽  
Corey T Matyas ◽  
...  

2021 ◽  
Author(s):  
Farbod Khoshnoud ◽  
Maziar Ghazinejad

Abstract In this paper the procedure for automating the photon quantum experiments for mobile robotic applications is presented. Due to the rapid advances of quantum technologies and quantum engineering, the integration of quantum capabilities in robotic and autonomous systems will be inevitable, and therefore the study and investigation of compatibility and adaptability of quantum systems and classical autonomous systems is of great importance. In a quantum-classical hybrid setup, the source of single photon generation is placed on a leader robot which can send correlated single photons to robot followers. In the case of quantum entanglement, spontaneous parametric down-conversion process using nonlinear paired BBO crystals is implemented which sends entangled photons to the single photon counting modules installed on mobile robots. In the case of quantum cryptography, single photons are sent from Alice robot to Bob robot, where Alice has the course of single photon and Bob has a polarizing beamsplitter and two detectors and that can detect the polarization of photons as vertical and horizontal. Bob then can convert the polarizations to a digital signals as zeros and ones and use them as communication information for control purposes through a classical channel. Motorized optics equipment can automatically align the source of photons to detectors on the mobile robots. The automated alignment procedure is one of the key enabling technologies in integrating quantum capabilities with control of mobile robotic systems. In this paper, in particular, the automated alignment is studied while considering the uncertainties in the dynamic of the system which can potentially cause the alignment task very challenging. The uncertainty analysis in the automated alignment is implemented by Optimal Uncertainty Quantification technique to ensure achieving the quantum control of the robotic systems and presented here for the first time.


2016 ◽  
Vol 113 (48) ◽  
pp. 13642-13647 ◽  
Author(s):  
Robert Fickler ◽  
Geoff Campbell ◽  
Ben Buchler ◽  
Ping Koy Lam ◽  
Anton Zeilinger

Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon.


Quanta ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 111
Author(s):  
Mani L. Bhaumik

The enigmatic nonlocal quantum correlation that was famously derided by Einstein as "spooky action at a distance" has now been experimentally demonstrated to be authentic. The quantum entanglement and nonlocal correlations emerged as inevitable consequences of John Bell's epochal paper on Bell's inequality. However, in spite of some extraordinary applications as well as attempts to explain the reason for quantum nonlocality, a satisfactory account of how Nature accomplishes this astounding phenomenon is yet to emerge. A cogent mechanism for the occurrence of this incredible event is presented in terms of a plausible quantum mechanical Einstein–Rosen bridge.Quanta 2018; 7: 111–117.


Quanta ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 1-6
Author(s):  
Stan Gudder

Quantum entanglement is an important resource in quantum information technologies. Here, we study and characterize in a precise mathematical language some of the weird and nonintuitive features of quantum entanglement. We begin by illustrating why entanglement implies action at a distance. We then introduce a simple criterion for determining when a pure quantum state is entangled. Finally, we present a measure for the amount of entanglement for a pure state.Quanta 2020; 9: 1–6.


Sign in / Sign up

Export Citation Format

Share Document