prepared state
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 1)

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4254
Author(s):  
Katarzyna Byś ◽  
Beata Strachota ◽  
Adam Strachota ◽  
Ewa Pavlova ◽  
Miloš Steinhart ◽  
...  

Novel stiff, tough, highly transparent and ultra-extensible self-assembled nanocomposite elastomers based on poly(2-methoxyethylacrylate) (polyMEA) were synthesized. The materials are physically crosslinked by small in-situ-formed silica nanospheres, sized 3–5 nm, which proved to be a very efficient macro-crosslinker in the self-assembled network architecture. Very high values of yield stress (2.3 MPa), tensile strength (3.0 MPa), and modulus (typically 10 MPa), were achieved in combination with ultra-extensibility: the stiffest sample was breaking at 1610% of elongation. Related nanocomposites doubly filled with nano-silica and clay nano-platelets were also prepared, which displayed interesting synergy effects of the fillers at some compositions. All the nanocomposites exhibit ‘plasto-elastic’ tensile behaviour in the ‘as prepared’ state: they display considerable energy absorption (and also ‘necking’ like plastics), but at the same time a large but not complete (50%) retraction of deformation. However, after the first large tensile deformation, the materials irreversibly switch to ‘real elastomeric’ tensile behaviour (with some creep). The initial ‘plasto-elastic’ stretching thus causes an internal rearrangement. The studied materials, which additionally are valuable due to their high transparency, could be of application interest as advanced structural materials in soft robotics, in implant technology, or in regenerative medicine. The presented study focuses on structure-property relationships, and on their effects on physical properties, especially on the complex tensile, elastic and viscoelastic behaviour of the polyMEA nanocomposites.


2020 ◽  
Vol 8 ◽  
Author(s):  
Daniel Claudino ◽  
Jerimiah Wright ◽  
Alexander J. McCaskey ◽  
Travis S. Humble

By design, the variational quantum eigensolver (VQE) strives to recover the lowest-energy eigenvalue of a given Hamiltonian by preparing quantum states guided by the variational principle. In practice, the prepared quantum state is indirectly assessed by the value of the associated energy. Novel adaptive derivative-assembled pseudo-trotter (ADAPT) ansatz approaches and recent formal advances now establish a clear connection between the theory of quantum chemistry and the quantum state ansatz used to solve the electronic structure problem. Here we benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves for a few selected diatomic molecules, namely H2, NaH, and KH. Using numerical simulation, we find both methods provide good estimates of the energy and ground state, but only ADAPT-VQE proves to be robust to particularities in optimization methods. Another relevant finding is that gradient-based optimization is overall more economical and delivers superior performance than analogous simulations carried out with gradient-free optimizers. The results also identify small errors in the prepared state fidelity which show an increasing trend with molecular size.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1006
Author(s):  
Valentina Zhukova ◽  
Paula Corte-Leon ◽  
Lorena González-Legarreta ◽  
Ahmed Talaat ◽  
Juan Maria Blanco ◽  
...  

The influence of post-processing conditions on the magnetic properties of amorphous and nanocrystalline microwires has been thoroughly analyzed, paying attention to the influence of magnetoelastic, induced and magnetocrystalline anisotropies on the hysteresis loops of Fe-, Ni-, and Co-rich microwires. We showed that magnetic properties of glass-coated microwires can be tuned by the selection of appropriate chemical composition and geometry in as-prepared state or further considerably modified by appropriate post-processing, which consists of either annealing or glass-coated removal. Furthermore, stress-annealing or Joule heating can further effectively modify the magnetic properties of amorphous magnetic microwires owing to induced magnetic anisotropy. Devitrification of microwires can be useful for either magnetic softening or magnetic hardening of the microwires. Depending on the chemical composition of the metallic nucleus and on structural features (grain size, precipitating phases), nanocrystalline microwires can exhibit either soft magnetic properties or semi-hard magnetic properties. We demonstrated that the microwires with coercivities from 1 A/m to 40 kA/m can be prepared.


Author(s):  
Valentina Zhukova ◽  
Paula Corte-León ◽  
Lorena Gonzalez-Legarreta ◽  
Ahmed Talaat ◽  
Juan Maria Blanco ◽  
...  

The influence of post-processing conditions on the magnetic properties of amorphous and nanocrystalline microwires have been thoroughly analyzed, paying attention on the influence of magnetoelastic, induced and magnetocrystalline anisotropies on the hysteresis loops of Fe-, Ni- and Co-rich microwires. We showed that magnetic properties of glass-coated microwires can be tuned by the selection of appropriate chemical composition and geometry in as-prepared state or further considerably modified by appropriate post-processing, which consists of either annealing or glass-coated removal. Furthermore, stress-annealing or Joule heating can further effectively modify the magnetic properties of amorphous magnetic microwires owing to induced magnetic anisotropy. Devitrification of microwires can be useful for either magnetic softening or magnetic hardening of the microwires. Depending on the chemical composition of the metallic nucleus and on structural features (grain size, precipitating phases) nanocrystalline microwires can exhibit either soft magnetic properties or semi-hard magnetic properties. We demonstrated that the microwires with coercivities from 1 A/m to 40 kA/m can be prepared.


2019 ◽  
Author(s):  
Peng P. Gao ◽  
Joseph. W. Graham ◽  
Wen-Liang Zhou ◽  
Jinyoung Jang ◽  
Sergio Angulo ◽  
...  

AbstractDendritic spikes in thin dendritic branches (basal and oblique dendrites) of pyramidal neurons are traditionally inferred from spikelets measured in the cell body. Here, we used laser-spot voltage-sensitive dye imaging in cortical pyramidal neurons (rat brain slices) to investigate the voltage waveforms of dendritic potentials occurring in response to spatially-restricted glutamatergic inputs. Local dendritic potentials lasted 200–500 ms and propagated to the cell body where they caused sustained 10-20 mV depolarizations. Plateau potentials propagating from dendrite to soma, and action potentials propagating from soma to dendrite, created complex voltage waveforms in the middle of the thin basal dendrite, comprised of local sodium spikelets, local plateau potentials, and back-propagating action potentials, superimposed on each other. Our model replicated these experimental observations and made predictions, which were tested in experiments. Dendritic plateau potentials occurring in basal and oblique branches put pyramidal neurons into an activated neuronal state (“prepared state”), characterized by depolarized membrane potential and faster membrane responses. The prepared state provides a time window of 200-500 ms during which cortical neurons are particularly excitable and capable of following afferent inputs. At the network level, this predicts that sets of cells with simultaneous plateaus would provide cellular substrate for the formation of functional neuronal ensembles.New & NoteworthyIn cortical pyramidal neurons, we recorded glutamate-mediated dendritic plateau potentials using voltage imaging, and created a computer model that recreated experimental measures from dendrite and cell body. Our model made new predictions, which were then tested in experiments. Plateau potentials profoundly change neuronal state -- a plateau potential triggered in one basal dendrite depolarizes the soma and shortens membrane time constant, making the cell more susceptible to firing triggered by other afferent inputs.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Gary J. Mooney ◽  
Charles D. Hill ◽  
Lloyd C. L. Hollenberg

Abstract The ability to prepare sizeable multi-qubit entangled states with full qubit control is a critical milestone for physical platforms upon which quantum computers are built. We investigate the extent to which entanglement is found within a prepared graph state on the 20-qubit superconducting quantum computer IBM Q Poughkeepsie. We prepared a graph state along a path consisting of all twenty qubits within the device and performed full quantum state tomography on all groups of four connected qubits along this path. We determined that each pair of connected qubits was inseparable and hence the prepared state was entangled. Additionally, a genuine multipartite entanglement witness was measured on all qubit subpaths of the graph state and we found genuine multipartite entanglement on chains of up to three qubits. These results represent a demonstration of entanglement in one of the largest solid-state qubit arrays to date and indicate the positive direction of progress towards the goal of implementing complex quantum algorithms relying on such effects.


2019 ◽  
Vol 74 (6) ◽  
pp. 523-537
Author(s):  
Jyoti Faujdar ◽  
Atul Kumar

AbstractIn this article, we revisit the question of analysing the efficiencies of partially entangled states in three-qubit classes under real conditions. Our results show some interesting observations regarding the efficiencies and correlations of partially entangled states. Surprisingly, we find that the efficiencies of many three-qubit partially entangled states exceed that of maximally entangled three-qubit states under real noisy conditions and applications of weak measurements. Our analysis, therefore, suggests that the efficiencies of partially entangled states are much more robust to noise than those of maximally entangled states at least for the GHZ (Greenberger–Horne–Zeilinger) class states, for certain protocols; i.e. less correlations in the initially prepared state may also lead to better efficiency and hence one need not always consider starting with a maximally entangled state with maximum correlations between the qubits. For a set of partially entangled states, we find that the efficiency is optimal, independent of the decoherence and state parameters, if the value of weak measurement parameter is very large. For other values of the weak measurement parameter, the robustness of the states depends on the decoherence and state parameters. Moreover, we further show that one can achieve higher efficiencies in a protocol by using non-optimal weak measurement strengths instead of optimal weak measurement strengths.


2019 ◽  
Author(s):  
Simona Trifu ◽  
Antonia Ioana Trifu

AbstractThis research has been carried out among climbing performers in Romania (a group of 60 climbers), starting from the desire to induce a state of preparation by watching a motivational short movie before performing a high difficulty route. The concept of preparation was related to the emotional impact of tonic or sensitive type (depending on the content of the movie) and the personality structure of the athletes, the conclusions drawn being in the area of optimization of performance by inducing an optimal state of preparation.Performance climbers can have two main attitudes to impact with emotional stimuli in the competitive environment: tonic versus sensitivity. We propose the study of the correlations between the personality structure of the athletes, the emotional impact on stimulation, respectively the quality of the prepared state of state, as the active regulatory status.The methodology included a batch of 60 climbers divided into two equal subgroups, before making a difficult route being allowed to view a movie with a tonic impact, or a sensitive impact. Personality was evaluated through five scales (Intelligence, Emotional Stability, Sensitivity, Imagination, and Perspicacity) while administering a Preparatory and Motivation Questionnaire.People with a high level of intelligence, imagination and perspicacity can more easily create attitudes, habits and habitual contests, as well as conduct appropriate to the concrete conditions of the competitive situation, while people with low emotional stability and sensitivity are more inclined towards a sensitive, labile, sensitive approach to the competitive situation. The research implies the necessity of organizing the mental operators with the purpose of suitability to the performance poor, in accordance with the tactical training of the athlete and with the personality traits.Emotional stimulation leads to affective participation, reception and awareness of favoring issues, stimulation of will, self-regulation of activity according to aspirations and strategies.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1002 ◽  
Author(s):  
Erik Brachmann ◽  
Marietta Seifert ◽  
Niels Neumann ◽  
Nidal Alshwawreh ◽  
Margitta Uhlemann ◽  
...  

In an effort to develop a cost-efficient technology for wireless high-temperature surface acoustic wave sensors, this study presents an evaluation of a combined method that integrates physical vapor deposition with electroless deposition for the fabrication of platinum-based planar antennas. The proposed manufacturing process becomes attractive for narrow, thick, and sparse metallizations for antennas in the MHz to GHz frequency range. In detail, narrow platinum-based lines of a width down to 40 μm were electroless-deposited on γ-Al 2O 3 substrates using different seed layers. At first, the electrolyte chemistry was optimized to obtain the highest deposition rate. Films with various thickness were prepared and the electrical resistivity, microstructure, and chemical composition in the as-prepared state and after annealing at temperatures up to 1100 ∘C were evaluated. Using these material parameters, the antenna was simulated with an electromagnetic full-wave simulation tool and then fabricated. The electrical parameters, including the S-parameters of the antenna, were measured. The agreement between the simulated and the realized antenna is then discussed.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Nimi Ann Vincent ◽  
R. Shivashankar ◽  
K. N. Lokesh ◽  
Jinu Mary Jacob

Electrical resistivity measurement of freshly prepared uncured and cured soil-cement materials is done and the correlations between the factors controlling the performance of soil-cement and electrical resistivity are discussed in this paper. Conventional quality control of soil-cement quite often involves wastage of a lot of material, if it does not meet the strength criteria. In this study, it is observed that, in soil-cement, resistivity follows a similar trend as unconfined compressive strength, with increase in cement content and time of curing. Quantitative relations developed for predicting 7-day strength of soil-cement mix, using resistivity of the soil-cement samples at freshly prepared state, after 1-hour curing help to decide whether the soil-cement mix meets the desired strength and performance criteria. This offers the option of the soil-cement mix to be upgraded (possibly with additional cement) in its fresh state itself, if it does not fulfil the performance criteria, rather than wasting the material after hardening.


Sign in / Sign up

Export Citation Format

Share Document