automated alignment
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 27)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Farbod Khoshnoud ◽  
Maziar Ghazinejad

Abstract In this paper the procedure for automating the photon quantum experiments for mobile robotic applications is presented. Due to the rapid advances of quantum technologies and quantum engineering, the integration of quantum capabilities in robotic and autonomous systems will be inevitable, and therefore the study and investigation of compatibility and adaptability of quantum systems and classical autonomous systems is of great importance. In a quantum-classical hybrid setup, the source of single photon generation is placed on a leader robot which can send correlated single photons to robot followers. In the case of quantum entanglement, spontaneous parametric down-conversion process using nonlinear paired BBO crystals is implemented which sends entangled photons to the single photon counting modules installed on mobile robots. In the case of quantum cryptography, single photons are sent from Alice robot to Bob robot, where Alice has the course of single photon and Bob has a polarizing beamsplitter and two detectors and that can detect the polarization of photons as vertical and horizontal. Bob then can convert the polarizations to a digital signals as zeros and ones and use them as communication information for control purposes through a classical channel. Motorized optics equipment can automatically align the source of photons to detectors on the mobile robots. The automated alignment procedure is one of the key enabling technologies in integrating quantum capabilities with control of mobile robotic systems. In this paper, in particular, the automated alignment is studied while considering the uncertainties in the dynamic of the system which can potentially cause the alignment task very challenging. The uncertainty analysis in the automated alignment is implemented by Optimal Uncertainty Quantification technique to ensure achieving the quantum control of the robotic systems and presented here for the first time.


2021 ◽  
pp. 1-8
Author(s):  
Renato Torres ◽  
Baptiste Hochet ◽  
Hannah Daoudi ◽  
Fabienne Carré ◽  
Isabelle Mosnier ◽  
...  

<b><i>Introduction:</i></b> Electrode array translocation is an unpredictable event with all types of arrays, even using a teleoperated robot in a clinical scenario. We aimed to compare the intracochlear trauma produced by the HiFocus™ Mid-Scala (MS) electrode array (Advanced Bionics, Valencia, CA, USA) using a teleoperated robot, with an automated robot connected to a navigation system to align the pre-curved tip of the electrode array with the coiling direction of the scala tympani (ST). <b><i>Methods:</i></b> Fifteen freshly frozen temporal bones were implanted with the MS array using the RobOtol® (Collin, Bagneux, France). In the first group (<i>n</i> = 10), the robot was teleoperated to insert the electrode array into the basal turn of the ST under stereomicroscopic vision, and then the array was driven by a slow-speed hydraulic insertion technique with an estimated placement of the pre-curved electrode tip. In the second group (<i>n</i> = 5), 3 points were obtained from the preoperative cone-beam computed tomography: the 2 first defining the ST insertion axis of the basal turn and a third one at the center of the ST at 270°. They provided the information to the automated system (RobOtol® connected with a navigation system) to automatically align the electrode array with the ST insertion axis and to aim the pre-curved tip toward the subsequent coiling of the ST. After this, the electrode array was manually advanced. Finally, the cochleae were obtained and fixed in a crystal resin, and the position of each electrode was determined by a micro-grinding technique. <b><i>Results:</i></b> In all cases, the electrode array was fully inserted into the cochlea and the depth of insertion was similar using both techniques. With the teleoperated robotic technique, translocations of the array were observed in 7/10 insertions (70%), but neither trauma nor array translocation occurred with automated robotic insertion. <b><i>Conclusion:</i></b> We have successfully tested an automated insertion system (robot + navigation) that could accurately align a pre-curved electrode array to the axis of the basal turn of the ST and its subsequent coiling, which reduced intracochlear insertion trauma and translocation.


2021 ◽  
Author(s):  
MICHAEL SKUHERSKY ◽  
Tailin Wu ◽  
Eviatar Yemini ◽  
Edward Boyden ◽  
Max Tegmark

Determining cell identity in volumetric images of tagged neuronal nuclei is an ongoing challenge in contemporary neuroscience. Frequently, cell identity is determined by aligning and matching tags to an "atlas" of labeled neuronal positions and other identifying characteristics. Previous analyses of such C. elegans datasets have been hampered by the limited accuracy of such atlases, especially for neurons present in the ventral nerve cord, and also by time-consuming manual elements of the alignment process. We present a novel automated alignment method for sparse and incomplete point clouds of the sort resulting from typical C. elegans fluorescence microscopy datasets. This method involves a tunable learning parameter and a kernel that enforces biologically realistic deformation. We also present a pipeline for creating alignment atlases from datasets of the recently developed NeuroPAL transgene. In combination, these advances allow us to label neurons in volumetric images with confidence much higher than previous methods. We release, to the best of our knowledge, the most complete C. elegans 3D positional neuron atlas, encapsulating positional variability derived from 7 animals, for the purposes of cell-type identity prediction for myriad applications (e.g., imaging neuronal activity, gene expression, and cell-fate).


2021 ◽  
Author(s):  
M. Stonehouse ◽  
A. Blanchard ◽  
B. Guilhabert ◽  
Y. Zhang ◽  
E. Gu ◽  
...  

2021 ◽  
Vol 6 (2) ◽  
pp. 2611-2617
Author(s):  
Pengyun Li ◽  
Xiaoming Liu ◽  
Dan Liu ◽  
Xiaoqing Tang ◽  
Masaru Kojima ◽  
...  

Author(s):  
Martin Forrer ◽  
Valentin Lendenmann ◽  
Benito Rusconi ◽  
Pascal Wüst ◽  
Hans Forrer ◽  
...  

2021 ◽  
Vol 92 (1) ◽  
pp. 015117
Author(s):  
Renju S. Mathew ◽  
Roshan O’Donnell ◽  
Danielle Pizzey ◽  
Ifan G. Hughes

2020 ◽  
Author(s):  
Silvio Sarubbo ◽  
Luciano Annicchiarico ◽  
Francesco Corsini ◽  
Luca Zigiotto ◽  
Guillaume Herbet ◽  
...  

Abstract BACKGROUND Functional preoperative planning for resection of intrinsic brain tumors in eloquent areas is still a challenge. Predicting subcortical functional framework is especially difficult. Direct electrical stimulation (DES) is the recommended technique for resection of these lesions. A reliable probabilistic atlas of the critical cortical epicenters and subcortical framework based on DES data was recently published. OBJECTIVE To propose a pipeline for the automated alignment of the corticosubcortical maps of this atlas with T1-weighted MRI. METHODS To test the alignment, we selected 10 patients who underwent resection of brain lesions by using DES. We aligned different cortical and subcortical functional maps to preoperative volumetric T1 MRIs (with/without gadolinium). For each patient we quantified the quality of the alignment, and we calculated the match between the location of the functional sites found at DES and the functional maps of the atlas. RESULTS We found an accurate brain extraction and alignment of the functional maps with both the T1 MRIs of each patient. The matching analysis between functional maps and functional responses collected during surgeries was 88% at cortical and, importantly, 100% at subcortical level, providing a further proof of the correct alignment. CONCLUSION We demonstrated quantitatively and qualitatively the reliability of this tool that may be used for presurgical planning, providing further functional information at the cortical level and a unique probabilistic prevision of distribution of the critical subcortical structures. Finally, this tool offers the chance for multimodal planning through integrating this functional information with other neuroradiological and neurophysiological techniques.


Sign in / Sign up

Export Citation Format

Share Document