Parental Stress and Prechilling Effects on Pennsylvania Smartweed (Polygonum pensylvanicum) Achenes

Weed Science ◽  
1982 ◽  
Vol 30 (3) ◽  
pp. 243-248 ◽  
Author(s):  
James L. Jordan ◽  
David W. Staniforth ◽  
Catalina M. Jordan

Pennsylvania smartweed (Polygonum pensylvanicum L.) achenes were harvested from plants growing either free from competition or in competition with corn (Zea mays L. ‘Pioneer 3780′) plants. Seeds were dormant when harvested. After 15 weeks of prechilling, 4 and 35% of the seeds germinated from plants with and without corn competition, respectively; after 30 weeks of prechilling, more than 92% of all seeds germinated. Scanning electron microscopy revealed that the carpel walls of achenes from plants with corn competition were porous with many channels. Carpel walls of achenes from plants without corn competition were without pores and channels. Transmission electron microscopy showed more lipid bodies in the embryo epidermal cells of seeds from plants with corn competition. Cell walls of embryos from non-prechilled seeds from plants with corn competition contained lipoidosomes that traversed cell walls. Lipoidosomes did not occur in cells of prechilled seeds.

1985 ◽  
Vol 63 (4) ◽  
pp. 757-761 ◽  
Author(s):  
E. Untiedt ◽  
K. Müller

Lyophyllum palustre (Peck) Singer, a basidiomycete (Tricholomataceae) parasitizing Sphagnum, was examined for points of contact between hyphae and Sphagnum cells with the help of light microscopy, scanning electron microscopy, and transmission electron microscopy. Results indicate that the fungus attacks Sphagnum cells by penetrating cell walls and altering host cell protosplasm. In addition, the formation of additional partitioning cell walls in attacked living Sphagnum cells was observed.


1995 ◽  
Vol 73 (3) ◽  
pp. 425-431 ◽  
Author(s):  
Carlos Madrigal ◽  
Paloma Melgarejo

The influence of an isolate of Epicoccum nigrum and one of its antibiotics, flavipin, on the spores, mycelium, and germ tubes of Monilinia laxa in culture was studied using light and electron microscopy. Epicoccum nigrum and flavipin induced the development of stromata in cultures. Abundant clusters of microconidia of M. laxa were produced on the induced stromata exposed to E. nigrum and flavipin. Deformation of hyphae and germ tubes such as swellings, coilings, and abnormal ramifications were also noticeable under light and scanning electron microscopy after treatment with E. nigrum or flavipin. Transmission electron microscopy revealed cytoplasmic coagulation of the cells and abundant vacuoles and lipid bodies associated with membranes. In some cases alteration and disorganization of membranes was also apparent. Key words: antagonism, antibiosis, flavipin, biological control.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
Venita F. Allison ◽  
J. E. Ubelaker ◽  
J. H. Martin

It has been suggested that parasitism results in a reduction of sensory structures which concomitantly reflects a reduction in the complexity of the nervous system. The present study tests this hypothesis by examining the fine morphology and the distribution of sensory receptors for two species of aspidogastrid trematodes by transmission and scanning electron microscopy. The species chosen are an ectoparasite, Cotylaspis insignis and an endoparasite, Aspidogaster conchicola.Aspidogaster conchicola and Cotylaspis insignis were obtained from natural infections of clams, Anodonta corpulenta and Proptera purpurata. The specimens were fixed for transmission electron microscopy in phosphate buffered paraformaldehyde followed by osmic acid in the same buffer, dehydrated in an ascending series of ethanol solutions and embedded in Epon 812.


Author(s):  
Thomas P. Turnbull ◽  
W. F. Bowers

Until recently the prime purposes of filters have been to produce clear filtrates or to collect particles from solution and then remove the filter medium and examine the particles by transmission electron microscopy. These filters have not had the best characteristics for scanning electron microscopy due to the size of the pores or the surface topography. Advances in polymer chemistry and membrane technology resulted in membranes whose characteristics make them versatile substrates for many scanning electron microscope applications. These polysulphone type membranes are anisotropic, consisting of a very thin (0.1 to 1.5 μm) dense skin of extremely fine, controlled pore texture upon a much thicker (50 to 250μm), spongy layer of the same polymer. Apparent pore diameters can be controlled in the range of 10 to 40 A. The high flow ultrafilters which we are describing have a surface porosity in the range of 15 to 25 angstrom units (0.0015-0.0025μm).


Author(s):  
John F. Mansfield

The current imaging trend in optical microscopy, scanning electron microscopy (SEM) or transmission electron microscopy (TEM) is to record all data digitally. Most manufacturers currently market digital acquisition systems with their microscope packages. The advantages of digital acquisition include: almost instant viewing of the data as a high-quaity positive image (a major benefit when compared to TEM images recorded onto film, where one must wait until after the microscope session to develop the images); the ability to readily quantify features in the images and measure intensities; and extremely compact storage (removable 5.25” storage devices which now can hold up to several gigabytes of data).The problem for many researchers, however, is that they have perfectly serviceable microscopes that they routinely use that have no digital imaging capabilities with little hope of purchasing a new instrument.


1997 ◽  
Vol 5 (4) ◽  
pp. 14-15
Author(s):  
John F. Mansfield

The current imaging trend in optical microscopy, scanning electron microscopy (SEM) or transmission electron microscopy (TEM) is to record all data digitally. Most manufacturers currently market digital acquisition systems with their microscope packages. The advantages of digital acquisition include: almost instant viewing of the data as a high-quality positive image (a major benefit when compared to TEM images recorded onto film, where one must wait until after the microscope session to develop the images); the ability to readily quantify features in the images and measure intensities; and extremely compact storage (removable 5.25” storage devices which now can hold up to several gigabytes of data).


Sign in / Sign up

Export Citation Format

Share Document