Cultural Control of Common Waterplantain (Alisma triviale) in Wild Rice (Zizania palustris)

Weed Science ◽  
1983 ◽  
Vol 31 (4) ◽  
pp. 562-566 ◽  
Author(s):  
Joel K. Ransom ◽  
Ervin A. Oelke

Experiments were conducted to determine the influence of water depth, fall flooding, and burial depth on the development of common waterplantain (Alisma trivialePursh. # ALSPA) in wild rice (Zizania palustrisL.). The optimum water depths for common waterplantain from corms were 20 cm when grown outside in submerged pots at St. Paul and 2 and 15 cm when grown in a sloping field at Grand Rapids. Growth of common waterplantain from seeds was maximum at the lowest water depths (2 to 7 cm) at both locations. Wild rice dry weight and seed yield in the same experiments were maximum at the 20- and 30-cm water depths at St. Paul and the 15- and 28-cm depths at Grand Rapids. The increased wild rice seed yield and dry weight at these depths was related to increased tiller production. Wild rice yield was similar at all water depths at Grand Rapids when grown with common waterplantain from corms at a density of 11 plants/m2. Water depths that decreased the effect of common waterplantain interference with wild rice, reduced wild rice yield. Establishment of common waterplantain from corms was maximum at the 5- and 15-cm depths and was severely reduced at the 0- and 30-cm soil depths in soils not flooded in the fall but flooded in the spring. Fall flooding killed all corms regardless of burial depth. Corm mortality under fall-flooded conditions may be due to the effects of ice-encasement.

Weed Science ◽  
1987 ◽  
Vol 35 (5) ◽  
pp. 640-646 ◽  
Author(s):  
Sharon A. Clay ◽  
Ervin A. Oelke

Studies were conducted at Grand Rapids, MN, to determine the effect of giant burreed (Sparganium eurycarpumEngelm. # SPGEU) planted at 6, 12, and 24 corms/m2on wild rice (Zizania palustrisL. ‘K2′) growth and yield. Giant burreed, a spreading perennial, had shoot densities of 21, 29, and 42/m2at harvest for the 6, 12, and 24 corms/m2treatments, respectively. Wild rice yield and panicle number were reduced approximately 60% when giant burreed shoot density was 40/m2or higher when compared to the weed-free control. Giant burreed did not interfere with nutrient uptake of wild rice on a whole-plant basis, and increased N fertilizer application did not reduce losses in dry weight. Giant burreed reduced penetration of photosynthetically active radiation (PAR) from 2 to 35% in the wild rice canopy from the early tillering to the anthesis stage of wild rice development. In growth chamber studies, wild rice dry weight and panicle number were reduced by 46 and 65%, respectively, when wild rice was shaded for 12 weeks and compared to a full light treatment. Reduction of PAR penetration into the wild rice canopy appears to be the major mechanism of giant burreed interference with wild rice.


1990 ◽  
Vol 4 (2) ◽  
pp. 294-298
Author(s):  
Sharon A. Clay ◽  
Ervin A. Oelke

The response of giant burreed to bentazon, propanil, 2,4-D (amine salt), and 2,4-D plus crop oil (0.5% v/v) was evaluated at the 2-aerial-leaf stage of wild rice. Bentazon, 2,4-D, and 2,4-D plus crop oil at 1.1 kg/ha or more in 1984, and propanil and 2,4-D plus crop oil at 4.5 kg/ha in 1985 reduced giant burreed dry weight. Generally, herbicide rates above 1.1 kg/ha injured wild rice and reduced yields compared to weed-free controls. None of the study treatments resulted in effective giant burreed control without unacceptable injury to wild rice.


Weed Science ◽  
1982 ◽  
Vol 30 (1) ◽  
pp. 10-14 ◽  
Author(s):  
J. K. Ransom ◽  
E. A. Oelke

Three cultivars of wild rice (Zizania palustrisL.) were grown with various densities of common waterplantain (Alisma trivialePursh) established from seeds and from rootstocks during 1979 and 1980. Wild rice cultivars did not differ in their response to common waterplantain interference. Common waterplantain grown from seeds at densities up to 82/m2did not significantly reduce wild rice yield. Common waterplantain established from rootstocks significantly reduced wild rice yield at densities as low as 3/m2. A density of 43/m2reduced wild rice yield by 91%. The yield component most susceptible to interference from common waterplantain was panicles per plant. The number of seeds per panicle was reduced by densities as low as 11/m2and seed weight was reduced by densities of 22/m2or greater. Only a density of 43/m2reduced the stand of wild rice. Common waterplantain established from rootstocks at a density of 17 plants/m2did not reduce wild rice yield if removed by 7 weeks after planting. Interference from common waterplantain for 9 weeks or longer reduced wild rice yield by approximately 50%.


2002 ◽  
Vol 80 (12) ◽  
pp. 1283-1294 ◽  
Author(s):  
P F Lee

The influence of nutrients and intraspecific variations in growth form were examined for their effect on plant density in stands of northern wild rice, Zizania palustris L. In a field situation, densities of a size-restricted wild rice population increased as nutrient levels in the sediment increased. No self-thinning occurred until the population density exceeded 350 plants/m2. A series of controlled experiments examined whether these wild rice densities were determined by resource depletion and (or) intraspecific competition. As nutrient levels increased under constant plant densities, tillering, dry weight, and seed production increased more for populations with the capacity for higher vegetative and reproductive potential. As plant densities increased under constant nutrient levels, height, weight, and seed production declined but inequality of individual plants increased. When both nutrient levels and population densities were increased simultaneously, seed production per panicle declined at higher densities under unfertilized conditions but was unaffected in the treatment with the highest fertilizer level. It was hypothesized that plant densities under field conditions were the result of an integrated mechanism that was influenced by nutrients and the degree of asymmetric competition characteristic of the population. As nutrient levels increase, plant densities would be expected to decrease for populations with high levels of asymmetric competition and increase for populations with low levels of asymmetric competition.Key words: wild rice, density effects, nutrients, intraspecific variation.


1969 ◽  
Vol 47 (10) ◽  
pp. 1525-1531 ◽  
Author(s):  
A. G. Thomas ◽  
J. M. Stewart

The effect of different water depths on wild rice plants (Zizania aquatica L.) was assessed in terms of morphological and dry weight changes which occurred during a complete life cycle. Specifically, plant heights, number and area of leaves, dry weights of leaf, stem, root, and flower were determined for plants grown under controlled environmental conditions and those under field conditions at Long Point, Lake Erie.Three distinct phases in plant height increase, and associated morphological changes characterized the life cycle of wild rice. While the duration of phases one and three was unaffected by water depth, the time spent in phase two increased with depth and resulted in plants flowering later than those at shallower depths. Sufficient water is required to cover the submersed leaves and to support the floating leaves, while plants at the aerial stage survived with no free water above the rooting media. Yield in terms of dry weight of plant parts is decreased by water depths less than 8 cm and greater than 110 cm. The decline of wild rice in many areas of Ontario is attributed to either excessively low or high water levels during the critical submersed and floating leaf stages.


1993 ◽  
Vol 89 (1) ◽  
pp. 165-171 ◽  
Author(s):  
Douglas G. Muench ◽  
O. William Archibold ◽  
Allen G. Good

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 574
Author(s):  
Yun-Yin Feng ◽  
Jin He ◽  
Yi Jin ◽  
Feng-Min Li

Both water stress and P deficit limit soybean seed yield, but the effects of water regimes and P application rates, their interaction on P status, acquisition, and partitioning, and their roles in yield performance have not been well-studied. Two soybean genotypes (Huangsedadou (HD) and Zhonghuang 30 (ZH)) with contrasting seed yield and root dry weight (DW) were used to investigate the P status, P acquisition, P partitioning, and yield formation under two water regimes (well-watered (WW) and cyclic water stress (WS)) and three P rates (0 (P0), 60 (P60), and 120 (P120) mg P kg−1 dry soil). The results show that increased P and water supply increased the seed yield, shoot and root DW and P concentrations and accumulations in different organs. Cultivar ZH had a significantly higher seed yield than HD at P60 and P120 under WS and at P0 under WW, but a lower seed yield at P60 and P120 under WW. Cultivar ZH had a significantly higher P harvest index and P acquisition efficiency, but a significantly lower shoot and root DW than HD. The interaction between water treatments and P rates had significant effects on leaf and stem P concentration. Cultivar ZH had significantly lower P partitioning to leaves and stems but significantly higher P partitioning to seeds than HD. The seed yield was positively correlated with leaf and seed P accumulations and P acquisition efficiency under WS. We conclude that (1) adequate water supply improved the P mobilization from leaves and stems at maturity, which may have improved the seed yield; and (2) the high P acquisition efficiency is coordination to high P partition to seeds to produce a high seed yield under water- and P-limited conditions.


Weed Science ◽  
1990 ◽  
Vol 38 (2) ◽  
pp. 113-118 ◽  
Author(s):  
S. Kent Harrison

Multiple regression and response surface plots were used to analyze the effects of common lambsquarters population density and interference duration on weed growth and soybean seed yield. Under favorable growing conditions in 1986, weed biomass production at all population densities and interference durations was four to five times that produced in 1987, under less favorable conditions. However, there was no significant treatment by year interaction for soybean seed yield reduction by common lambsquarters, and production of each kg/ha weed biomass resulted in an average soybean yield reduction of 0.26 kg/ha. Utilizing 5% yield loss as an arbitrary threshold level, the regression equation predicted a common lambsquarters density threshold of 2 plants/m of row for 5 weeks of interference after crop emergence and 1 plant/m of row for 7 weeks. Seed production by individual common lambsquarters plants was highly correlated (r=0.92) with weed dry weight, and seed production ranged from 30 000 to 176 000 seeds/plant.


2013 ◽  
Vol 230 (2) ◽  
pp. 284-292 ◽  
Author(s):  
Gangadaran Surendiran ◽  
ChunYan Goh ◽  
Khuong Le ◽  
Zhaohui Zhao ◽  
Fatemeh Askarian ◽  
...  

2020 ◽  
Vol 27 (2) ◽  
pp. 251-266
Author(s):  
Muhammad Ehsan Safdar ◽  
Muhammad Ather Nadeem ◽  
Abdul Rehman ◽  
Amjed Ali ◽  
Nasir Iqbal ◽  
...  

Little is known about best herbicidal weed option for weed eradication in soybean in agro-climatic circumstances of Sargodha, Punjab, Pakistan. A two year field study was accomplished at College of Agriculture experimental site Sargodha in spring seasons of 2018 and 2019 to evaluate the efficacy of different herbicides adjacent to major weeds present in soybean. The study consisted of 8 herbicide treatments including two pre-emergence herbicides (pendimethalin at 489.1 g a.i. ha-1, pendimethalin + S-metolachlor at 731.1 g a.i. ha-1) which are applied immediately after sowing and six post-emergence herbicides (oxyfluorfen at 237.1 g a.i. ha-1, metribuzin at 518.7 g a.i. ha-1, quizalofop-p-ethyl at 148.2 g a.i. ha-1, acetochlor at 741 g a.i. ha-1, halosulfuron at 37 g a.i. ha-1and topramezone at 21.5 g a.iha-1) which were used 25 days subsequent to sowing. In contrast to control, all herbicides have shown significant decline in weed density (up to 94%) and dry weight (up to 88%); and caused significant increases in plant height (up to 85%), pod bearing branches (up to 77%), number of pods per plant (up to 83%), 100-seed weight (up to 37%) and seed yield (up to 160%) of soybean. Among herbicides, topramezone at 21.5 g a.i ha-1 gave significantly the highest (1234 and 1272 kg ha-1 in the year 2018 and 2019) seed yield of soybean and HEIs (1.28 and 1.03 in year 2018 and 2019, respectively). However, oxyfluorfen at 237.1 g a.i. ha-1, pendimethalin + S-metolachlor at 731.1 g a.i. ha-1, pendimethalin at 489.1 g a.i. ha-1, quizalofop-p-ethyl at 148.2 g a.i.ha-1 followed it. The regression analysis depicted a significant negative moderate relationship of soybean seed yield with weed dry weight (R2 = 0.7074), and pods per plant (R2 = 0.7012) was proved to be the main yield component responsible for higher yield of soybean.


Sign in / Sign up

Export Citation Format

Share Document