Interaction Between Wheat (Triticum aestivum) and Diclofop to Reduce the Cost of Annual Ryegrass (Lolium rigidum) Control

Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 634-639 ◽  
Author(s):  
Deirdre Lemerle ◽  
Birgitte Verbeek ◽  
Neil E. Coombes

The influence of wheat variety on the dose-response of annual ryegrass to diclofop-methyl (POST) was examined in the field in 1992 and 1993 in southern New South Wales, Australia. The aim was to determine if planting a strongly competitive variety of wheat improved control of annual ryegrass at reduced doses of diclofop-methyl. Suppression of ryegrass was dependent on herbicide dose, season, and wheat variety. In the absence of herbicide, dry matter (DM) production of annual ryegrass at 300 plants m−2at anthesis was 500 g ha−1with Dollarbird and Katunga compared to 1000 g ha−1with Rosella or Shrike in 1992. In 1993, DM was approximately 150 g ha−1with Dollarbird or Katunga, and 350 g ha−1with Shrike or Rosella. Ryegrass DM was reduced by diclofop-methyl to a greater extent, relative to the weedy unsprayed controls, with less competitive varieties Rosella and Shrike than with the more competitive Dollarbird or Katunga. Diclofop-methyl at 0.28 kg a.i. ha−1reduced DM of ryegrass growing with Katunga to less than 100 g m−2in 1992, compared to more than 200 g m2with the other varieties. In 1993, diclofop-methyl was more effective on ryegrass, and the same dose reduced ryegrass DM to almost zero in all varieties. Grain yields in unsprayed weedy controls of Dollarbird and Katunga were reduced approximately 20% by annual ryegrass compared with yields achieved with herbicides in both years. Yields of Rosella and Shrike in the unsprayed controls were reduced about 40% in 1992 and 60% in 1993. Only small increases in grain yields of all varieties occurred from diclofop-methyl doses above 0.13 kg a.i. ha−1. Poorly competitive varieties were dependent on herbicides to achieve grain yield potential and had a greater risk of weed survival when herbicide efficacy was reduced. In contrast, strongly competitive varieties, likely to retard build-up of weed seed in the soil, are less dependent on herbicides to achieve grain yield potential, and therefore result in reduced weed control cost.

1984 ◽  
Vol 24 (125) ◽  
pp. 236
Author(s):  
GK McDonald ◽  
BG Sutton ◽  
FW Ellison

Three winter cereals (wheat varieties Songlen and WW 15, triticale variety Satu) were grown after cotton or summer fallow under three levels of applied nitrogen (0, 100 and 200 kg N/ha) at Narrabri, New South Wales. The cereals were sown on August 7, 1980 and growing season rainfall was supplemented by a single irrigation. Leaf area, total shoot dry matter production and ears per square metre were lower after cotton than after summer fallow, while grain yields of cereals sown immediately after cotton were 33% lower than those sown after fallow. Adding nitrogen increased leaf area, dry matter and grain yields of crops grown after cotton and fallow, but significant increases were not obtained with more than 100 kg/ha of applied nitrogen. Crops grown after cotton required an application of 100 kg N/ha for leaf and dry matter production at anthesis to equal that of crops grown after fallow with no additional nitrogen. The corresponding cost to grain yield of growing cotton was equivalent to 200 kg N/ha. The low grain yield responses measured in this experiment (1 8 and 10% increase to 100 kg N/ha after cotton and fallow, respectively) were attributed to the combined effects of late sowing, low levels of soil moisture and loss, by denitrification, of some of the applied nitrogen. The triticale, Satu, yielded significantly less than the two wheats (1 99 g/m2 for Satu c.f. 255 and 286 g/m2 for Songlen and WW 15, respectively), and did not appear to be a viable alternative to wheat in a cotton rotation.


1968 ◽  
Vol 8 (35) ◽  
pp. 731 ◽  
Author(s):  
PR Dann

Wheat (CV. Heron) was subjected to various clipping treatments at Yanco, New South Wales, in 1963 and 1964. Clipping of vegetative growth decreased straw and grain yields in both years, but the decline in yield was much greater in 1963 than in 1964. Weight per grain was the major grain yield component reduced by clipping. Highly significant correlation; were obtained between dry matter removed at clipping, weight per grain, and grain yield.


2015 ◽  
Vol 66 (4) ◽  
pp. 349 ◽  
Author(s):  
Julianne M. Lilley ◽  
Lindsay W. Bell ◽  
John A. Kirkegaard

Recent expansion of cropping into Australia’s high-rainfall zone (HRZ) has involved dual-purpose crops suited to long growing seasons that produce both forage and grain. Early adoption of dual-purpose cropping involved cereals; however, dual-purpose canola (Brassica napus) can provide grazing and grain and a break crop for cereals and grass-based pastures. Grain yield and grazing potential of canola (up until bud-visible stage) were simulated, using APSIM, for four canola cultivars at 13 locations across Australia’s HRZ over 50 years. The influence of sowing date (2-weekly sowing dates from early March to late June), nitrogen (N) availability at sowing (50, 150 and 250 kg N/ha), and crop density (20, 40, 60, 80 plants/m2) on forage and grain production was explored in a factorial combination with the four canola cultivars. The cultivars represented winter, winter × spring intermediate, slow spring, and fast spring cultivars, which differed in response to vernalisation and photoperiod. Overall, there was significant potential for dual-purpose use of winter and winter × spring cultivars in all regions across Australia’s HRZ. Mean simulated potential yields exceeded 4.0 t/ha at most locations, with highest mean simulated grain yields (4.5–5.0 t/ha) in southern Victoria and lower yields (3.3–4.0 t/ha) in central and northern New South Wales. Winter cultivars sown early (March–mid-April) provided most forage (>2000 dry sheep equivalent (DSE) grazing days/ha) at most locations because of the extended vegetative stage linked to the high vernalisation requirement. At locations with Mediterranean climates, the low frequency (<30% of years) of early sowing opportunities before mid-April limited the utility of winter cultivars. Winter × spring cultivars (not yet commercially available), which have an intermediate phenology, had a longer, more reliable sowing window, high grazing potential (up to 1800 DSE-days/ha) and high grain-yield potential. Spring cultivars provided less, but had commercially useful grazing opportunities (300–700 DSE-days/ha) and similar yields to early-sown cultivars. Significant unrealised potential for dual-purpose canola crops of winter × spring and slow spring cultivars was suggested in the south-west of Western Australia, on the Northern Tablelands and Slopes of New South Wales and in southern Queensland. The simulations emphasised the importance of early sowing, adequate N supply and sowing density to maximise grazing potential from dual-purpose crops.


2003 ◽  
Vol 43 (1) ◽  
pp. 71 ◽  
Author(s):  
M. K. Conyers ◽  
C. L. Mullen ◽  
B. J. Scott ◽  
G. J. Poile ◽  
B. D. Braysher

The cost of buying, carting and spreading limestone, relative to the value of broadacre crops, makes investment in liming a questionable proposition for many farmers. The longer the beneficial effects of limestone persist, however, the more the investment in liming becomes economically favourable. We re-established previous lime trials with the aim of measuring the long-term effects of limestone on surface acidity (pH run-down), subsurface acidity (lime movement) and grain yield. The study made use of experiments where there was adequate early data on soil chemical properties and cereal yields. We report data from 6 trials located at 4 sites between Dubbo and Albury in New South Wales. The rate of surface soil (0–10 cm) pH decline after liming was proportional to the pH attained 1 year after liming. That is, the higher the pH achieved, the more rapid the rate of subsequent pH decline. Since yields (product removal) and nitrification (also acid producing) may both vary with pH, the post-liming pH acts as a surrogate for the productivity and acid-generating rate of the soil–plant system. The apparent lime loss rate of the surface soils ranged from the equivalent of nearly 500 kg limestone/ha.year at pH approaching 7, to almost zero at pH approaching 4. At commercial application rates of 2–2.5 t/ha, the movement of alkali below the layer of application was restricted. However, significant calcium (Ca) movement sometimes occurred to below 20 cm depth. At rates of limestone application exceeding the typical commercial rate of 2.5 t/ha, or at surface pH greater than about 5.5, alkali and Ca movement into acidic subsurface soil was clearly observed. It is therefore technically feasible to ameliorate subsurface soil acidity by applying heavy rates of limestone to the soil surface. However, the cost and risks of this option should be weighed against the use of acid-tolerant cultivars in combination with more moderate limestone rates worked into the surface soil.There was a positive residual benefit of limestone on cereal grain yield (either barley, wheat, triticale, or oats) at all sites in both the 1992 and 1993 seasons. While acid-tolerant cultivars were less lime responsive than acid-sensitive ones, the best yields were generally obtained using a combination of liming and acid-tolerant cultivars.The long-term residual benefits of limestone were shown to extend for beyond 8–12 years and indicate that liming should be profitable in the long term.


1995 ◽  
Vol 35 (1) ◽  
pp. 93 ◽  
Author(s):  
RD FitzGerald ◽  
ML Curll ◽  
EW Heap

Thirty varieties of wheat originating from Australia, UK, USA, Ukraine, and France were evaluated over 3 years as dual-purpose wheats for the high rainfall environment of the Northern Tablelands of New South Wales (mean annual rainfall 851 mm). Mean grain yields (1.9-4.3 t/ha) compared favourably with record yields in the traditional Australian wheatbelt, but were much poorer than average yields of 6.5 t/ha reported for UK crops. A 6-week delay in sowing time halved grain yield in 1983; cutting in spring reduced yield by 40% in 1986. Grazing during winter did not significantly reduce yields. Results indicate that the development of wheat varieties adapted to the higher rainfall tablelands and suited to Australian marketing requirements might help to provide a useful alternative enterprise for tableland livestock producers.


2005 ◽  
Vol 45 (3) ◽  
pp. 269 ◽  
Author(s):  
D. F. Herridge ◽  
M. J. Robertson ◽  
B. Cocks ◽  
M. B. Peoples ◽  
J. F. Holland ◽  
...  

Apparent nodulation failures and associated low grain yields have been reported for commercial mungbean (Vigna radiata) crops in southern Queensland and northern New South Wales. We therefore conducted on-farm surveys of 40 commercial mungbean crops in the region in which symbiotic traits, i.e. nodulation and nitrogen fixation, and biomass and grain yield were monitored. Effects of bradyrhizobial inoculation and inoculation methods on mungbean and soybean (Glycine max) symbiosis and yield were determined in experiments at 3 sites in northern New South Wales. Thirty-four of the 35 mungbean crops assessed for nodulation were nodulated. The relationship between soil nitrate to a depth of 90 cm at sowing and mungbean nodulation was not significant. However, at low-to-moderate soil nitrate levels (<100 kg N/ha), the mean nodule score was 1.6, compared with 0.5 at high (>100 kg N/ha) soil nitrate levels. Soil nitrate had a negative effect on the percentage of mungbean nitrogen derived from nitrogen fixation (%Ndfa). Mean %Ndfa values for soil nitrate levels <50, >50–100 and >100 kg N/ha were 35, 22 and 19% respectively. Grain yields of the surveyed mungbean crops varied from 0.3 to 2.1 t/ha, and were correlated with shoot dry matter. Grain yield was not significantly correlated either with sowing soil nitrate, nodule score or %Ndfa. In the inoculation experiments, mungbean did not nodulate as well as soybean, producing about one-third the number of nodules. Both species responded to inoculation with increased nodulation, although data from one of the sites suggested that responses during early growth of mungbean were not maintained during pod-fill. Effects of inoculation on mungbean %Ndfa were marginal. Average increases were 9%, based on natural 15N abundance, and 6%, based on the ureide method. Soybean %Ndfa, on the other hand, responded strongly to inoculation, with increases of 56 (15N) and 77% (ureide). Inoculation increased mungbean crop N by an average of 10% and grain yield by 6%, compared with responses to fertiliser nitrogen of 31% (crop N) and 10% (grain yield). For soybean, inoculation increased crop nitrogen by 43% and grain yield by 7%, similar to responses to fertiliser nitrogen of 45 (crop N) and 5% (grain yield). These results suggest that inoculated mungbean was N-limited and that inoculation of mungbean using current technology may be somewhat ineffectual. We concluded that low nodulation and nitrogen fixation of commercial mungbean most likely results from the suppressive effects of nitrate and/or insufficient numbers of bradyrhizobia in the soil. When low symbiosis and low soil nitrate are combined, N is likely to limit crop growth, and potentially grain yield. Suggested strategies for improving mungbean nodulation and nitrogen fixation in the northern grains belt include selection of more symbiotically competent plant and bradyrhizobial genotypes and more effective utilisation of established soil populations of mungbean bradyrhizobia.


Author(s):  
Yashvir S. Chauhan ◽  
Rex Williams

Mungbean [Vigna radiata (L.) Wilczek] in Australia has been transformed from a niche opportunistic crop into a major summer cropping option for dryland growers in the summer-dominant rainfall regions of Queensland and New South Wales. This transformation followed stepwise genetic improvements in both grain yields and disease resistance. For example, more recent cultivars such as &lsquo;Crystal&rsquo;, &lsquo;Satin II&rsquo; and &lsquo;Jade-AU&lsquo; &nbsp;have provided up to a 20% yield advantage over initial introductions. Improved agronomic management to enable mechanised management and cultivation in narrow (&lt;50 cm) rows has further promised to increase yields. Nevertheless, average yields achieved by growers for their mungbean crops remain less than 1 t/ha, and are much more variable than other broad acre crops. &nbsp;Further increases in yield and crop resilience in mungbean are vital. In this review, opportunities to improve mungbean have been analysed at four key levels including phenology, leaf area development, dry matter accumulation and its partitioning into grain yield. Improving the prediction of phenology in mungbean may provide further scope for genetic improvements that better match crop duration to the characteristics of target environments. There is also scope to improve grain yields by increasing dry matter production through the development of more efficient leaf canopies. This may introduce additional production risks as dry matter production depends on the amount of available water, which varies considerably within and across growing regions in Australia. Improving crop yields by exploiting photo-thermal sensitivities to increase dry matter is likely a less risky strategy for these variable environments. Improved characterisation of growing environments using modelling approaches could also better define and identify the risks of major abiotic constraints. This would assist in optimising breeding and management strategies to increase grain yield and crop resilience in mungbean for the benefit of growers and industry.


2007 ◽  
Vol 58 (7) ◽  
pp. 690 ◽  
Author(s):  
R. H. Harris ◽  
J. R. Hirth ◽  
M. C. Crawford ◽  
W. D. Bellotti ◽  
M. B. Peoples ◽  
...  

A field experiment located in southern New South Wales compared the component yields of cereal–lucerne companion crops (cereals sown into established lucerne) with the yields of cereal and lucerne monocultures. In-crop lucerne herbicide suppression, cereal crop types (wheat and barley), and top-dressed nitrogen (N) were evaluated for the potential to improve cereal production in the presence of lucerne. Plant populations and biomass, cereal grain yields, and grain quality (protein, screenings, and contamination) were measured. Over the 3-year study, cereals sown into established lucerne (4 years of age at the commencement of the experiment) yielded 17% less (P < 0.05) grain than the cereal monoculture. Companion cropping also resulted in a 71% reduction (P < 0.05) in lucerne biomass over the growing season compared with the lucerne monoculture, but a 3-fold (P < 0.05) increase in total (cereal and lucerne) biomass production. There were no differences between wheat and barley crops in the presence of lucerne, although extensive lodging in the 2003-barley monoculture did result in a significant main treatment (+/0 lucerne and +/0 in-crop lucerne suppression) × crop type (wheat and barley) interaction in grain yield, but not cereal biomass. N top-dressed after tillering onto cereal–lucerne companion crops did not increase grain yield, although it did increase cereal biomass in 2003. Whilst in-crop lucerne suppression did not increase cereal grain yields, it did increase (P < 0.05) cereal biomass and reduced lucerne biomass at cereal maturity and contamination (lucerne pods and flowers) of the cereal grain. However, this practice reduced (P < 0.05) lucerne populations, and therefore potentially threatens the longer term viability of lucerne stands so more research is recommended to develop less detrimental strategies for achieving effective in-crop lucerne suppression. This study combined with results from others, suggests that rainfall was a major factor determining cereal responses in the presence of lucerne, and although there were responses in cereal biomass to additional N and herbicide suppression, these strategies appear to only have potential under favourable growing-season conditions.


1994 ◽  
Vol 34 (7) ◽  
pp. 967 ◽  
Author(s):  
BW Dunn ◽  
HG Beecher

The potential for suppling a portion of the required nitrogen (N) for aerial-sown rice crops by green manuring legume pasture was investigated in southern New South Wales. Green pasture material could be the source of up to 300 kg N/ha in the southern New South Wales ricegrowing systems. Three experiments were conducted over 2 seasons. Each included 3 land preparation treatments (fallow, pasture removed, pasture incorporated) split for 5 rates of N (0, 40, 80, 120, 160 kg N/ha) applied as urea immediately before flooding for aerial sowing. In all experiments fallow resulted in lower anaerobic incubation soil ammonium levels at flooding than the pasture-incorporated treatment. When the fallow was extended, N losses led to a decrease in grain yield. The incorporation of green manure resulted in an increase in grain yield at the nil N rate in experiment 1, where soil N levels were comparatively low and seasonal temperatures average. In experiment 2, where soil N levels were high and the temperatures before panicle initiation below average, the incorporation of green manure reduced total dry matter and increased per cent unfilled grain. Land preparation treatments did not affect total dry matter or grain yield in experiment 3, where a short season variety was grown and all treatments lodged severely. Grain yields in all experiments were affected by a season x soil fertility x variety interaction.


2009 ◽  
Vol 49 (10) ◽  
pp. 769 ◽  
Author(s):  
K. G. McMullen ◽  
J. M. Virgona

In southern New South Wales, Australia, grazing wheat during the vegetative and early reproductive growth stages (typically during winter) can provide a valuable contribution of high quality feed during a period of low pasture growth. This paper reports results from a series of experiments investigating the agronomic management of grazed wheats in southern NSW. The effect of sowing date and grazing on dry matter production and subsequent grain yield of a range of wheat cultivars was measured in five experiments in 2004 and 2005. In all experiments, results were compared with ungrazed spring wheat (cv. Diamondbird). Grain yield of the best winter cultivar was either the same or significantly greater than the spring cultivar in each of the five experiments. Within the winter wheat cultivars, there was significant variation in grain yield, protein content and screenings, depending on site and year with the cultivar Marombi out-yielding all others. Interestingly, this cultivar usually had the least dry matter post-grazing but the greatest dry matter by anthesis of the winter wheats. Generally, if sowing of the winter wheat was delayed, then the effects on yield were small or non-existent. The results are discussed with respect to the benefits of incorporating grazing cereals into cropping programs in the medium rainfall zone of southern Australia.


Sign in / Sign up

Export Citation Format

Share Document