scholarly journals The Wolf-Rayet Stars

1975 ◽  
Vol 67 ◽  
pp. 257-274
Author(s):  
Sergej V. Rublev

This review discusses the spectral classification, the absolute magnitude, the position in stellar systems, the physical properties and the evolution of WR stars.

1966 ◽  
Vol 24 ◽  
pp. 348-349
Author(s):  
Th. Schmidt-Kaler

This is only an informal remark about some difficulties I am worrying about.I have tried to recalibrate the MK system in terms of intrinsic colour (B–V)0and absolute magnitudeMv. The procedures used have been described in a review article by Voigt (Mitt. Astr. Ges.1963, p. 25–35), and the results for stars of the luminosity classes Ia-O,I and II have been given also in Blaauw's article on the calibration of luminosity criteria in vol. III (Basic Astronomical Data, p. 401) ofStars and Stellar Systems.


1976 ◽  
Vol 72 ◽  
pp. 75-78
Author(s):  
M. Grenon

The Geneva photometric system has been calibrated in terms of [M/H], θeff, Mv in the spectral range F5 to K4. As the spectral type is a datum generally available, we derive empirical relations showing the coupling of θeff and [M/H] at given spectral type and luminosity class. Similar relations are offered for the absolute magnitudes and provide a more accurate means for deriving spectroscopic parallaxes. Systematic effects on the estimation of the luminosity class are also shown.


1998 ◽  
Vol 11 (1) ◽  
pp. 566-566
Author(s):  
C. Jaschek ◽  
A.E. Gómez

We have analysed the standards of the MK system in the B0-F5 spectral region with the help of Hipparcos parallaxes, using only stars for which the error on the absolute magnitude is ≤ 0.3 mag. The sample stars (about one hundred) were scrutinized for companions and for interstellar extinction. We find that the main sequence is a wide band and that, although in general giants and dwarfs have different absolute magnitudes, the separation between luminosity class V and III is not clear. We conclude that there is no strict relation between luminosity class and absolute magnitude. The relation is only a statistical one and has a large intrinsic dispersion. We have analysed similarly the system of standards defined by Garrison and Gray (1994) separating low and high rotational velocity standards. We find similar effects as in the original MK system.


1995 ◽  
Vol 10 ◽  
pp. 399-402
Author(s):  
A.E. Gómez ◽  
C. Turon

The Hertzprung-Russel (HR) diagram luminosity calibration relies basically on three kinds of data: trigonometric parallaxes, kinematical data (proper motions and radial velocities) and cluster distances obtained by the zero-age main sequence fitting procedure. The most fundamental method to calculate the absolute magnitude is the use of trigonometric parallaxes, but up to now, accurate data only exist for stars contained in a small volume around the sun. Individual absolute magnitudes are obtained using trigonometric parallaxes or photometric and spectroscopic calibrations. In these calibrations the accuracy on the absolute magnitude determination ranges from ±0.m2 in the main sequence to ±0m5 in the giant branch. On the other hand, trigonometric parallaxes, kinematical data or cluster distances have been used to make statistical calibrations of the absolute magnitude. The standard error on the mean absolute magnitude calibrations ranges from ±0m3 to ±0m6 on the mean sequence, from ±0m5 to ±0m7 on thegiant branch and is of about 1mfor supergiants.Future improvements in the absolute magnitude determination will depend on the improvement of the basic data from the ground and space. A brief overview of the new available data is presented. In particular, the analysis of the first 30 months data of the Hipparcos mission (H30) (from the 37 months data of the whole mission) allows to perform a statistical evaluation of the improvements expected in the luminosity determination.


2021 ◽  
pp. 137-142
Author(s):  
Ikram Uralbaevich Tadjibaev

In the article, on the basis of observational data the problems of the specific frequency of globular clusters are studied. Possible relationships between them and the absolute stellar magnitude of their host galaxy are considered, where the observational data published in the literature were presented. It should be noted that before us the relationship between the specific frequency and the absolute magnitude is shown as exponential functions. An empirical relationship between the specific frequency and the absolute value of the host galaxy were obtained and showed that the dependence of the specific frequency on the absolute magnitude is not linear, but has a quadratic function. It is also shown that the specific frequency determines the number of globular clusters in a given galaxy relative to our Galaxy. Also in the article, based on the results of studies of the specific frequency, some discussions are presented related to the origin and evolution of globular clusters. The results obtained show that the ratios of the specific frequency to the luminosity of the host galaxy are different. Variations in the specific frequency of elliptical galaxies are associated with variations in the mass-to-luminous flux ratio. This may be due to the fact that the number of globular clusters in spiral galaxies per unit of luminosity of the halo and not of the entire galaxy. Analysis of the observational data shows that the values of the specific frequency of spiral galaxies are 5–6 times less than that of giant elliptical ones. As a result of the results of studies of the specific frequency of the globular clusters, unsolved problems are listed and possible solutions are shown. It is noted that the problem posed will be solved even more accurately if it is considered by the types of galaxies


1979 ◽  
Vol 53 ◽  
pp. 494-494
Author(s):  
Karl W. Kamper

An Allegheny parallax series of SS Cyg, consisting of 52 exposures obtained on 15 nights, was recently measured on the PDS microphotometer at the David Dunlap Observatory, and a value of (m.e.) derived for the absolute parallax. This is close to the mean of the two previous discordant measures for this star given in the table below. The weighted mean of the three determinations implies that the absolute magnitude, at quiescent phase, of the star is between 7.0 and 9.0 formally at a 90% confidence level. Recent parallax determinations made at Lick by Vasilevskls et al. (1975) for three other stars, listed below along with the Mt. Wilson value for U Gem, imply even fainter absolute magnitudes.


2000 ◽  
Vol 198 ◽  
pp. 368-369
Author(s):  
L Pompéia ◽  
B Barbuy ◽  
M. Grenon

We have a list of nearby bulge-like turnoff stars with metallicities in the range −0.3 ≤ [Fe/H] ≤ +0.6, for which we have the absolute magnitude from Hipparcos, Geneva photometry (therefore temperature and metallicity), and radial velocity from Coravel (Grenon 1990, 1997). From Hipparcos data, the turnoff of these field stars indicate an age of 10-11 Gyr, which would be the age of the most metal-rich component of the bulge.We obtained high resolution échelle spectra with FEROS, with the aim to carry out detailed analysis of these stars. In this paper we present the Li abundance for 40 of these metal-rich and old dwarf stars, as a function of their temperatures.


1880 ◽  
Vol 10 ◽  
pp. 539-545
Author(s):  
William Thomson

In the article on “Heat” published in the eleventh volume of the Encyclopœdia Britannica, referred to in my previous communications to the Royal Society on Steam Pressure Thermometers, it is shown that the Constant Pressure Air Thermometer is the proper form of expansional thermometer to give temperature on the absolute thermodynamic scale, with no other data as to physical properties of the fluid than the thermal effect which it experiences in being forced through a porous plug, as in the experiment of Joule and myself on this subject; and the thermal capacity of the fluid under constant pressure. These data for air, hydrogen, and nitrogen have all been obtained with considerable accuracy, and thererfore it becomes an important object towards promoting accurate thermometry, to make a practical working thermometer directly adapted to show temperature on the absolute thermodynamic scale through the whole range of temperature, from the lowest attainable by any means, to the highest for which glass remains solid.


Sign in / Sign up

Export Citation Format

Share Document