scholarly journals Physical and Dynamical Evolution of Long-Period Comets

1979 ◽  
Vol 81 ◽  
pp. 277-282 ◽  
Author(s):  
Paul R. Weissman

Oort (1950) first suggested that the source of the long-period comets is a large spherical cloud of comets surrounding the solar system and extending roughly halfway to the nearest stars. The observational evidence for this is the distribution of original inverse semi-major axes of the long-period comets which shows a large spike of comets at very small positive values of 1/ao, less than 10−4 AU−1. Attempts to model the evolution of these comets by Oort in his original paper, by Kendall (1961), Shteins (1961), and Whipple (1962) were successful in recreating the general shape of the 1/ao distribution. However in each case the authors were unable to match the observed ratio of new comets from the Oort cloud versus older comets evolving under the influence of planetary perturbations.

2006 ◽  
Vol 2 (S236) ◽  
pp. 43-54 ◽  
Author(s):  
Olga A. Mazeeva

AbstractThe dynamical evolution of 2⋅105 hypothetical Oort cloud comets by the action of planetary, galactic and stellar perturbations during 2⋅109 years is studied numerically. The evolution of comet orbits from the outer (104 AU <a<5⋅104 AU, a is semimajor axes) and the inner Oort cloud (5⋅103 AU <a<104 AU) to near-Earth space is investigated separately. The distribution of the perihelion (q) passage frequency in the planetary region is obtained calculating the numbers of comets in every interval of Δ q per year. The flux of long-period (LP) comets (orbital periods P>200 yr) with perihelion distances q<1.5 AU brighter than visual absolute magnitude H10=7 is ∼ 1.5 comets per year, and ∼18 comets with H10<10.9. The ratio of all LP comets with q<1.5 AU to ‘new’ comets is ∼5. The frequency of passages of LP comets from the inner Oort cloud through region q<1.5 AU is ∼3.5⋅10−13 yr−1, that is roughly one order of magnitude less than frequency of passages of LP comets from the outer cloud (∼5.28⋅10−12 yr−1). We show that the flux of ‘new’ comets with 15<q<31 AU is higher than with q<15 AU, by a factor ∼1.7 for comets from the outer Oort cloud and, by a factor ∼7 for comets from the inner cloud. The perihelia of comets from the outer cloud previously passed through the planetary region are predominated in the Saturn-Uranus region. The majority of inner cloud comets come in the outer solar system (q>15 AU), and a small fraction (∼0.01) of them can reach orbits with q<1.5 AU. The frequency of transfer of comets from the inner cloud (a<104 AU) to the outer Oort cloud (a>104 AU), from where they are injected to the region q<1.5 AU, is ∼6⋅10−14 yr−1.


2016 ◽  
Vol 12 (S325) ◽  
pp. 263-265
Author(s):  
Rustam Guliyev ◽  
Ayyub Guliyev

AbstractIn the present work we investigate the possible relationship of long-period comets with five large and distant trans-Neptunian bodies (Sedna, Eris, 2007 OR10, 2012 VP113and 2008 ST291) in order to determine the probability of the transfer of a part of these kind of comets to the inner of the Solar System. To identify such relationships, we studied the relative positions of the comet orbits and listed TNOs. Using numerical integration methods, we examined dynamical evolution of the comets and have found one encounter of comet C/1861J1 and Eris.


1996 ◽  
Vol 172 ◽  
pp. 209-212 ◽  
Author(s):  
J.Q. Zheng ◽  
M.J. Valtonen ◽  
S. Mikkola ◽  
H. Rickman

Investigators generally conjecture a steady flux of new comets from the Oort cloud through the inner Solar system. Due to gravitational perturbations by major planets these objects may escape, become long period comets (LPCs) if their orbital periods P are larger than 200yr or become short period comets (SPCs) when their period is less than 200yr. SPCs are further divided in two types: the Halley type comets (HT, for P > 20yr) and the Jupiter family comets (JF, for P < 20yr).


2019 ◽  
Vol 489 (1) ◽  
pp. 951-961 ◽  
Author(s):  
C de la Fuente Marcos ◽  
R de la Fuente Marcos

ABSTRACT The chance discovery of the first interstellar minor body, 1I/2017 U1 (‘Oumuamua), indicates that we may have been visited by such objects in the past and that these events may repeat in the future. Unfortunately, minor bodies following nearly parabolic or hyperbolic paths tend to receive little attention: over 3/4 of those known have data-arcs shorter than 30 d and, consistently, rather uncertain orbit determinations. This fact suggests that we may have observed interstellar interlopers in the past, but failed to recognize them as such due to insufficient data. Early identification of promising candidates by using N-body simulations may help in improving this situation, triggering follow-up observations before they leave the Solar system. Here, we use this technique to investigate the pre- and post-perihelion dynamical evolution of the slightly hyperbolic comet C/2018 V1 (Machholz–Fujikawa–Iwamoto) to understand its origin and relevance within the context of known parabolic and hyperbolic minor bodies. Based on the available data, our calculations suggest that although C/2018 V1 may be a former member of the Oort Cloud, an origin beyond the Solar system cannot be excluded. If extrasolar, it might have entered the Solar system from interstellar space at low relative velocity with respect to the Sun. The practical feasibility of this alternative scenario has been assessed within the kinematic context of the stellar neighbourhood of the Sun, using data from Gaia second data release, and two robust solar sibling candidates have been identified. Our results suggest that comets coming from interstellar space at low heliocentric velocities may not be rare.


1999 ◽  
Vol 173 ◽  
pp. 339-344 ◽  
Author(s):  
V.V. Emel'yanenko

AbstractThe dynamical evolution of objects from different zones of the solar system comet cloud to near-Earth space has been investigated. The steady-state number of objects with perihelion distancesq&lt; 1.5 AU and periodsP &lt;20 yr, arising from the near-parabolic flux of comets with absolute magnitudes brighter thanH10= 7 is ∼ 200 − 1000. The corresponding number for Halley-type comets is hundreds of times larger than the number of known Halley-type comets. The flux of objects in the Centaurs zone, captured from the near-parabolic flux is 300 times as large as the flux of new comets. The total number of cometary objects with semi-major axesain the range 50 &lt;a&lt; 500 AU andq∼ 1 AU is ∼ 10 times as large as the number of active comets. The probability of the transfer of objects from the trans-Neptunian orbits with 35 &lt;q&lt; 50 AU anda∼ 600 AU into the Jupiter family is ∼ 0.0001. The calculations show that trans-Neptunian objects on high-eccentricity orbits can be a significant continuous source for both the replenishment of the Oort cloud and the capture to short-period orbits.


1998 ◽  
Vol 11 (1) ◽  
pp. 223-228
Author(s):  
R. Malhotra

Ideas about the contents of the Solar System beyond Neptune and Pluto can be traced back to at least Edgeworth (1943, 1949) and Kuiper (1951), who speculated on the existence of pre-planetary small bodies in the outer Solar System beyond the orbit of Neptune - remnants of the accretion process in the primordial Solar Nebula. The basis for the speculation was primarily the argument that the Solar Nebula was unlikely to have been abruptly truncated at the orbit of Neptune, and that in the trans-Neptunian accretion timescales were too long for bodies larger than about ˜ 1000 km in radius to have formed in the 4.5 billion year age of the Solar System. Another important theoretical argument relevant to this region of the Solar System is related to the origin of short period comets. Fernández (1980) suggested that the short period comets may have an origin in a disk of small bodies beyond Neptune, rather than being “captured” from the population of long period comets originating in the Oort Cloud, the latter scenario having considerable difficulty reconciling the observed flux of short period comets with the exceedingly low efficiency of transfer of long period comet orbits to short period ones by means of the gravitational perturbations of the giant planets. The new scenario received further strength in the numerical work of Duncan et al. (1988) and Quinn et al. (1990) which showed that the relatively small orbital inclinations of the Jupiter-family short period comets were not consistent with a source in the isotropic Oort Cloud of comets but could be reproduced with a source in a low-inclination reservoir beyond Neptune’s orbit. Duncan et al. named this hypothetical source the Kuiper Belt, and the name has come into common use in the last decade (although other names are also in use, e.g. Edgeworth-Kuiper Belt, and trans-Neptunian objects). A recent theoretical milestone was the work by Holman and Wisdom (1993) and Levison and Duncan (1993) on the long term stability of test particle orbits in the trans-Neptunian Solar System. This work showed that low-eccentricity, low-inclination orbits with semimajor axes in excess of about 43 AU are stable on billion year timescales, but that in the region between 35 AU and 43 AU orbital stability times range from 107 yr to more than 109 yr [see, for example, figure 1 in Holman (1995)]. Orbital instability in this intermediate region typically leads to a close encounter with Neptune which causes dramatic orbital changes, with the potential for subsequent transfer to the inner Solar System. Thus, this region could in principle serve as the reservoir of short period comets at the present epoch. However, the idea of a kinematically cold — i.e. low-eccentricity, low-inclination — population in this region is at odds with recent observations, and the question of the origin of short period comets remains unsettled at the present time.


2009 ◽  
Vol 5 (S263) ◽  
pp. 57-66 ◽  
Author(s):  
Marc Fouchard

AbstractThe Oort cloud, which corresponds to the furthest boundary of our Solar System, is considered as the main reservoir of long period comets. This cloud is likely a residual of the Solar System formation due to the gravitational effects of the young planets on the remaining planetesimals. Given that the cloud extends to large distances from the Sun (several times 10 000 AU), the bodies in this region have their trajectories affected by the Galactic environment of the Solar System. This environment is responsible for the re-injection of the Oort cloud comets into the planetary region of the Solar System. Such comets, also called “new comets”, are the best candidates to become Halley type or “old” long period comets under the influence of the planetary gravitational attractions. Consequently, the flux of new comets represents the first stage of the long trip from the Oort cloud to the observable populations of comets. This is why so many studies are still devoted to this flux.The different perturbers related to the Galactic environment of the Solar System, which have to be taken into account to explain the flux are reviewed. Special attention will be paid to the gravitational effects of stars passing close to the Sun and to the Galactic tides resulting from the difference of the gravitational attraction of the Galaxy on the Sun and on a comet. The synergy which takes place between these two perturbers is also described.


Author(s):  
Rita Wysoczańska ◽  
Piotr A Dybczyński ◽  
Małgorzata Królikowska

Abstract Since 1950 when Oort published his paper on the structure of the cloud of comets it is believed that stars passing near this hypothetical cometary reservoir play an important role in the dynamical evolution of long period comets and injecting them into the observability region of the Solar System. The aim of this paper is to discuss two cases in which the data obtained from observations were used and stellar perturbations (of different intensity, strong case of C/2002 A3 LINEAR and weaker case of C/2013 F3 PANSTARRS) on cometary motion were detected. Using the best available data from the Gaia DR2 catalogue and some other sources we searched for close stellar passages near the Sun. Our study took into account that some of the stars are parts of multiple systems. Over 600 stars or systems that approached or will approach the Sun closer than 4.0 pc were found. Having the list of perturbers completed we studied their influence on a sample of 277 Oort spike comets that were observed since 1901 and discovered that two comets might have their orbits fundamentally changed due to a close stellar encounter. Our results show how much different the dynamical evolution of comets would have looked when their motion was considered only in the Galactic potential. Uncertainties both in stellar and cometary data were carefully taken into account. Our analysis indicates that the occurrence of stellar perturbations on cometary motions is very rare and the uncertainties of these effects are hard to estimate.


1993 ◽  
Vol 132 ◽  
pp. 265-269
Author(s):  
M.J. Valtonen ◽  
J.Q. Zheng

AbstractWe study scenarios where comets are not original members of the Solar System but have been acquired from the surrounding medium through dynamical evolution. This leads to estimates of the present day number density of comets in the interstellar medium which are not in contradiction with observational upper limits. We also consider the dynamical transfer of Oort Cloud comets into short period comets. The process is very sensitive to the inclination of the comet orbit which leads to strong bias in favour of low inclinations in short comet orbits.


Sign in / Sign up

Export Citation Format

Share Document