Implications for star formation in spiral galaxies from observations of nearby molecular cloud complexes

1979 ◽  
Vol 84 ◽  
pp. 284-284
Author(s):  
Bruce G. Elmegreen

I want to make three points about star formation in spiral galaxies that follow from consideration of the internal structure of giant molecular cloud complexes (GMCC). The first point comes from pressure considerations. The total pressure inside the star-forming core of a GMCC may be written 106k)v/3kms−1)4(17pc/D)2 for virial theorem line width v and cloud diameter D; the pressure from a spiral density wave shock (SDWS) is 105 k(ns/1cm−3)(vs/20kms−1)2 and the thermal pressure in the cloud is 104 k(n/103cm−3) (T/10K) for Boltzmann constant k. These three pressures differ by factors of 10. An SDWS has too low a pressure to affect a cloud core; the only way an SDWS could influence a GMCC is if it interacted with the low thermal pressure in the cloud, i.e., the SDWS could propagate into a cloud along the direction of a magnetic field which may be the source of large scale pressure in a transverse dimension. The second point is that the density and mass of a GMCC are so large that the cloud will enter an SDWS like a cannon ball and will not be readily deflected. GMCC in other galaxies would then look like spurs on the spiral pattern and not like dust lanes. The alternative to these two points is that an as yet undiscovered (or uncommon) population of low density (100cm−3) clouds exists involving GMCC-type masses, or that smaller clouds coalesce at the SDWS. This implies that the star-forming clouds studied by molecular observers would be post-SDWS and post-gravitational collapse objects. Finally, the maximum age of a GMCC in the solar neighborhood is probably less than 50 million years. Its destruction is a result of pressure forces from the stars which it creates. Destruction in this sense does not necessarily imply that the molecules are converted into atoms – only that the cloud is pushed around. In the solar neighborhood, some clouds may, in fact, turn into 21-cm features; e.g., an HI half shell with a radius of 100 pc and a visual extinction through the shell of 0.2 mag. contains 3×105 M⊙, the mass of a GMCC. However, in the 5-kpc ring of the Galaxy, there is too much H2 relative to HI to allow any cycling between H2 and HI that is in phase with an SDWS unless the cloud remains molecular for 80% of the cycle. More likely, the cloud will be “destroyed” before that time. The implication is that cloud destruction at 5 kpc must produce molecular shells in addition to some atomic shells. This could be observed.

1983 ◽  
Vol 100 ◽  
pp. 135-136
Author(s):  
L. Carrasco ◽  
A. Serrano

We derive the radial distribution of the specific angular momentum j=J/M, for the gas in M31, M51 and the galaxy, objects for which well observed unsmoothed rotation curves are available in the literature. We find the specific angular momentum to be anti-correlated with the present stellar formation rate, i.e. minima of spin angular momentum correspond to the loci of spiral arms. We find that the stellar formation rate is an inverse function of j. We derive new values of Oort's A constant for the arm and interarm regions in the solar neighborhood.


2019 ◽  
Vol 621 ◽  
pp. A131 ◽  
Author(s):  
C. Maier ◽  
B. L. Ziegler ◽  
C. P. Haines ◽  
G. P. Smith

Aims. As large-scale structures in the Universe develop with time, environmental effects become more and more important as a star formation quenching mechanism. Since the effects of environmental quenching are more pronounced in denser structures that form at later times, we seek to constrain environmental quenching processes using cluster galaxies at z <  0.3. Methods. We explored seven clusters from the Local Cluster Substructure Survey (LoCuSS) at 0.15 <  z <  0.26 with spectra of 1965 cluster members in a mass-complete sample from the ACReS (Arizona Cluster Redshift Survey) Hectospec survey covering a region that corresponds to about three virial radii for each cluster. We measured fluxes of [O II] λ 3727, Hβ, [O III] λ 5007, Hα, and [N II] λ 6584 emission lines of cluster members, enabling us to unambiguously derive O/H gas metallicities. We also measured star formation rates (SFRs) from extinction-corrected Hα fluxes. We compared our cluster galaxy sample with a field sample of 705 galaxies at similar redshifts observed with Hectospec as part of the same survey. Results. We find that star-forming cluster and field galaxies show similar median specific SFRs in a given mass bin of 1 − 3.2 × 1010 M⊙ and 3.2 − 10 × 1010 M⊙, respectively. But their O/H values are displaced, in the lower mass bin, to higher values (significance 2.4σ) at projected radii of R <  R200 compared with galaxies at larger radii and in the field. The comparison with metallicity-SFR-mass model predictions with inflowing gas indicates a slow-quenching scenario in which strangulation is initiated when galaxies pass R ∼ R200 by stopping the inflow of gas. We find tentative evidence that the metallicities of cluster members inside R200 are thereby increasing, but their SFRs are hardly affected for a period of time because these galaxies consume available disk gas. We use the observed fraction of star-forming cluster galaxies as a function of clustercentric radius compared to predictions from the Millennium simulation to constrain quenching timescales to be 1−2 Gyr, which is defined as the time between the moment the galaxy passes R200 until complete quenching of star formation. This is consistent with a slow-then-rapid quenching scenario. Slow quenching (strangulation) starts when the gas inflow is stopped when the galaxy passes R200 with a phase in which cluster galaxies are still star forming, but they show elevated metallicities tracing the ongoing quenching. This phase lasts for 1−2 Gyr, and meanwhile the galaxies travel to denser inner regions of the cluster. This is followed by a “rapid” phase, i.e., a rapid complete quenching of star formation due to the increasing ram pressure toward the cluster center that can also strip the cold gas in massive galaxies.


2020 ◽  
Vol 492 (2) ◽  
pp. 2973-2995 ◽  
Author(s):  
Robin G Tress ◽  
Rowan J Smith ◽  
Mattia C Sormani ◽  
Simon C O Glover ◽  
Ralf S Klessen ◽  
...  

ABSTRACT We present here the first of a series of papers aimed at better understanding the evolution and properties of giant molecular clouds (GMCs) in a galactic context. We perform high-resolution, three-dimensional arepo simulations of an interacting galaxy inspired by the well-observed M51 galaxy. Our fiducial simulations include a non-equilibrium, time-dependent, chemical network that follows the evolution of atomic and molecular hydrogen as well as carbon and oxygen self-consistently. Our calculations also treat gas self-gravity and subsequent star formation (described by sink particles), and coupled supernova feedback. In the densest parts of the simulated interstellar medium (ISM), we reach sub-parsec resolution, granting us the ability to resolve individual GMCs and their formation and destruction self-consistently throughout the galaxy. In this initial work, we focus on the general properties of the ISM with a particular focus on the cold star-forming gas. We discuss the role of the interaction with the companion galaxy in generating cold molecular gas and controlling stellar birth. We find that while the interaction drives large-scale gas flows and induces spiral arms in the galaxy, it is of secondary importance in determining gas fractions in the different ISM phases and the overall star formation rate. The behaviour of the gas on small GMC scales instead is mostly controlled by the self-regulating property of the ISM driven by coupled feedback.


1994 ◽  
Vol 140 ◽  
pp. 168-169
Author(s):  
Tomoharu Oka ◽  
Tetsuo Hasegawa ◽  
Masahiko Hayashi ◽  
Toshihiro Handa ◽  
Sei'ichi Sakamoto

AbstractWe report a large scale mapping observation of the Galactic center region in the CO (J=2-1) line using the Tokyo-NRO 60cm survey telescope. Distribution of the CO (J=2-1) emission in the I-V plane suggests that molecular clouds forms a huge complex (Nuclear Molecular cloud Complex, NMC). Tracers of star formation activities in the last 106-108 years show that star formation has occured in a ring ~ 100 pc in radius. Relative to this Star Forming Ring, the molecular gas is distributed mainly on the positive longitude side. This may indicate that much of the gas in NMC is in transient orbit to fall into the star forming ring or to the nucleus in the near future.


2004 ◽  
Vol 217 ◽  
pp. 422-423 ◽  
Author(s):  
Cathy Horellou ◽  
Bärbel Koribalski

The luminous barred galaxy NGC 6872 is one of the largest spiral galaxies known. Star formation occurs all along the arms, which extend over more than 100 kpc. The galaxy experiences tidal perturbations from the nearby companion IC 4970 passing by on a low-inclination, prograde orbit. We have mapped the large-scale distribution and kinematics of the atomic gas (HI) in the NGC 6872/IC 4970 system and carried out N-body simulations with stars and gas. HI is absent from the central region; on the other hand, large gas concentrations are found at the tip of the tidal arms, spatially coincident with the blue stellar clusters and with the peaks of the Hα distribution. We use that remarkable system to investigate the evolution of gas and stars in a close prograde encounter, examine the influence of a dark matter halo on the length of the tidal tails, and test models of collisionally induced star formation.


1987 ◽  
Vol 115 ◽  
pp. 161-163 ◽  
Author(s):  
J. B. Whiteoak ◽  
F. F. Gardner ◽  
J. R. Forster ◽  
P. Palmer ◽  
V. Pankonin

H2CO and OH masers in the H II-region/molecular-cloud complex Sgr B2 have been observed with the VLA and combined with other observations of OH and H2O masers. It is found that groups of the masers and compact continuum components are located along a north-south line extending across the complex. The overall alignment suggests that star formation is being triggered by a single large-scale event such as an interaction between molecular clouds.


1998 ◽  
Vol 184 ◽  
pp. 177-178 ◽  
Author(s):  
Fumio Sato ◽  
Tetsuo Hasegawa ◽  
John B. Whiteoak ◽  
Ryosuke Miyawaki

Sgr B2 is one of the most active star-forming complexes in our Galaxy located ~100 pc from the Galactic center. Whiteoak et al. (1987) found that groups of the OH and H2CO masers and the compact HII regions are aligned in a north-south line, and suggested that star formation there is being triggered by a single large-scale event such as an interaction between molecular clouds. In order to investigate the total molecular cloud distribution and the triggering mechanism of the active massive-star formation in the Sgr B2 region, we mapped it in the 13CO and C18O (J = 1–0) lines with the Nobeyama 45 m telescope in 1988 March and May. In the 13CO line, an area was mapped of 345″ in right ascension and 495″ in declination covering the whole Sgr B2 molecular cloud at a grid spacing of 15″. In the C18O line, more restricted area was observed at 7.5″ or 15″ spacing. The HPBW of the 45 m telescope was 16″ at 110 GHz. Full description of the observations will be given elsewhere (Whiteoak et al. 1997).


1987 ◽  
Vol 115 ◽  
pp. 557-586 ◽  
Author(s):  
Judith S. Young

Observations of the molecular cloud distributions in spiral galaxies are reviewed. For the luminous, relatively face-on Sc galaxies, the azimuthally averaged CO distributions are centrally peaked, with H2surface densities which decrease as a function of radius. For the Sb and Sa galaxies, the CO distributions exhibit central CO holes up to 5 kpc across in a significant fraction of the galaxies studied. In galaxies with this CO morphology, the central hole is coincident with the nuclear bulge of the galaxy. Additionally, the radial distributions of CO and13CO emission are similar in 10 Sb and Sc galaxies.


1996 ◽  
Vol 169 ◽  
pp. 583-590 ◽  
Author(s):  
Jan Palouš

Nearly all the star formation in the Milky Way and nearby spiral galaxies occurs in the giant molecular clouds (GMC). Inside the GMC's the units of star formation are the high density (≥ 103cm–3) and high mass (≥ 103M⊙) clumps (Blitz, 1991). Once a GMC is “infected” by star formation many clumps form stars producing a star forming region. The formation of massive stars induces destructive processes, such as H2 dissociation, HI ionization, stellar winds and supernova explosions, thus self-limiting the lifetime of GMC to ∼ 3 107 years.


Author(s):  
A J Rigby ◽  
N Peretto ◽  
R Adam ◽  
P Ade ◽  
M Anderson ◽  
...  

Abstract Determining the mechanism by which high-mass stars are formed is essential for our understanding of the energy budget and chemical evolution of galaxies. By using the New IRAM KIDs Array 2 (NIKA2) camera on the Institut de Radio Astronomie Millimétrique (IRAM) 30-m telescope, we have conducted high-sensitivity and large-scale mapping of a fraction of the Galactic plane in order to search for signatures of the transition between the high- and low-mass star-forming modes. Here, we present the first results from the Galactic Star Formation with NIKA2 (GASTON) project, a Large Programme at the IRAM 30-m telescope which is mapping ≈2 deg2 of the inner Galactic plane (GP), centred on ℓ = 23${_{.}^{\circ}}$9, b = 0${_{.}^{\circ}}$05, as well as targets in Taurus and Ophiuchus in 1.15 and 2.00 mm continuum wavebands. In this paper we present the first of the GASTON GP data taken, and present initial science results. We conduct an extraction of structures from the 1.15 mm maps using a dendrogram analysis and, by comparison to the compact source catalogues from Herschel survey data, we identify a population of 321 previously-undetected clumps. Approximately 80 per cent of these new clumps are 70 μm-quiet, and may be considered as starless candidates. We find that this new population of clumps are less massive and cooler, on average, than clumps that have already been identified. Further, by classifying the full sample of clumps based upon their infrared-bright fraction – an indicator of evolutionary stage – we find evidence for clump mass growth, supporting models of clump-fed high-mass star formation.


Sign in / Sign up

Export Citation Format

Share Document