scholarly journals Resonant Stellar Orbits in Spiral Galaxies

1975 ◽  
Vol 69 ◽  
pp. 237-244
Author(s):  
P. O. Vandervoort

This paper reviews a series of investigations of the orbits of stars in the regions of the Lindblad resonances of a spiral galaxy. The analysis is formulated in an epicyclic approximation. Analytic solutions of the epicyclic equations of motion are obtained by the method of harmonic balance of Bogoliubov and Mitropolsky. These solutions represent the resonance phenomena exhibited by the orbits in generally excellent agreement with numerical solutions.

1960 ◽  
Vol 27 (1) ◽  
pp. 139-144 ◽  
Author(s):  
W. E. Baker

In this paper, the theory is developed for the elastic-plastic response of a thin spherical shell to spherically symmetric internal transient pressure loading. Analytic solutions are obtained to the linear, small-deflection equations of motion for shell materials which exhibit various degrees of strain-hardening. Numerical solutions obtained by digital computer are also presented for the equations for large deflections obtained by accounting for shell thinning and increase in radius during deformation. The theory is compared with experiment, and is shown to be in good agreement.


Author(s):  
Salvatore Capozziello ◽  
Francesco Bajardi

We discuss some main aspects of theories of gravity containing nonlocal terms in view of cosmological applications. In particular, we consider various extensions of general relativity based on geometrical invariants as [Formula: see text], [Formula: see text] and [Formula: see text] gravity where [Formula: see text] is the Ricci curvature scalar, [Formula: see text] is the Gauss–Bonnet topological invariant, [Formula: see text] the torsion scalar and the operator [Formula: see text] gives rise to nonlocality. After selecting their functional form by using Noether symmetries, we find out exact solutions in a cosmological background. It is possible to reduce the dynamics of selected models and to find analytic solutions for the equations of motion. As a general feature of the approach, it is possible to address the accelerated expansion of the Hubble flow at various epochs, in particular the dark energy issues, by taking into account nonlocality corrections to the gravitational Lagrangian. On the other hand, it is possible to search for gravitational nonlocal effects also at astrophysical scales. In this perspective, we search for symmetries of [Formula: see text] gravity also in a spherically symmetric background and constrain the free parameters, Specifically, by taking into account the S2 star orbiting around the Galactic Center SgrA[Formula: see text], it is possible to study how nonlocality affects stellar orbits around such a massive self-gravitating object.


1975 ◽  
Vol 32 (4) ◽  
pp. 457-464 ◽  
Author(s):  
C. A. Borges ◽  
L. Cesari ◽  
D. A. Sánchez

2006 ◽  
Vol 2 (S235) ◽  
pp. 104-104
Author(s):  
Stéphane Herbert-Fort ◽  
Dennis Zaritsky ◽  
Yeun Jin Kim ◽  
Jeremy Bailin ◽  
James E. Taylor

AbstractThe degree to which outer dark matter halos of spiral galaxies rotate with the disk is sensitive to their accretion history and may be probed with associated satellite galaxies. We use the Steward Observatory Bok telescope to measure the sense of rotation of nearby isolated spirals and combine these data with those of their associated satellites (drawn from SDSS) to directly test predictions from numerical simulations. We aim to constrain models of galaxy formation by measuring the projected component of the halo angular momentum that is aligned with that of spiral galaxy disks, Jz. We find the mean bulk rotation of the ensemble satellite system to be co-rotating with the disk with a velocity of 22 ± 13 km/s, in general agreement with previous observational studies and suggesting that galaxy disks could be formed by halo baryons collapsing by a factor of ≈10. We also find a prograde satellite fraction of 51% and Jz, of the satellite system to be positively correlated with the disk, albeit at low significance (2655 ± 2232 kpc km/s).


Author(s):  
B. O. Al-Bedoor ◽  
A. A. Al-Qaisia

This paper presents an analysis of the forced vibration of rotating blade due to torsional excitation. The model analyzed is a multi-modal forced second order ordinary differential equation with multiple harmonically varying coefficients. The method of Harmonic Balance (HB) is employed to find approximate solutions for each of the blade modes in the form of truncated Fourier series. The solutions have shown multi resonance response for the first blade vibration mode. The examination of the determinant of the harmonic balance solution coefficient matrix for stability purposes has shown that the region between the two resonance points is an unstable vibration region. Numerical integration of the equations is conducted at different frequency ratio points and the results are discussed. This solution provides a very critical operation and design guidance for rotating blade with torsional vibration excitation.


2009 ◽  
Vol 27 (12) ◽  
pp. 4379-4389 ◽  
Author(s):  
K. Stasiewicz ◽  
C. Z. Cheng

Abstract. Cluster measurements in the magnetosheath with spacecraft separations of 2000 km indicate that magnetic pulsations interpreted as mirror mode structures are not frozen in plasma flow, but do propagate with speeds of up to ~50 km/s. Properties of these pulsations are shown to be consistent with propagating slow magnetosonic solitons. By using nonlinear two fluid theory we demonstrate that the well known classical mirror instability condition corresponds to a small subset in a continuum of exponentially varying solutions. With the measured plasma moments we have determined parameters of the polybaric pressure model in the region of occurrence of mirror type structures and applied it to numerical modelling of these structures. In individual cases we obtain excellent agreement between observed mirror mode structures and numerical solutions for magnetosonic solitons.


1984 ◽  
Vol 106 (4) ◽  
pp. 477-483 ◽  
Author(s):  
C. B. Watkins ◽  
H. D. Branch ◽  
I. E. Eronini

Vibration of a statically loaded, inherently compensated hydrostatic journal bearing due to oscillating exhaust pressure is investigated. Both angular and radial vibration modes are analyzed. The time-dependent Reynolds equation governing the pressure distribution between the oscillating journal and sleeve is solved together with the journal equation of motion to obtain the response characteristics of the bearing. The Reynolds equation and the equation of motion are simplified by applying regular perturbation theory for small displacements. The numerical solutions of the perturbation equations are obtained by discretizing the pressure field using finite-difference approximations with a discrete, nonuniform line-source model which excludes effects due to feeding hole volume. An iterative scheme is used to simultaneously satisfy the equations of motion for the journal. The results presented include Bode plots of bearing-oscillation gain and phase for a particular bearing configuration for various combinations of parameters over a range of frequencies, including the resonant frequency.


Sign in / Sign up

Export Citation Format

Share Document