scholarly journals Implications of White-Dwarf Crystallization for the Chemical Composition of the Planetary Nuclei

1968 ◽  
Vol 34 ◽  
pp. 425-427
Author(s):  
H.M. Van Horn

It now seems to be reasonably well-established that the central stars of planetary nebulae evolve directly into white dwarfs. Evidently a knowledge of the chemical composition of the white dwarfs would therefore be of considerable importance in helping to identify the point in the evolution at which the mechanism responsible for expulsion of the nebular shell becomes operative. For this reason I would like to present some evidence which provides a direct suggestion for the internal composition of some of the white dwarfs and to examine briefly the implications of this suggestion for the relation between the planetary nuclei and the white dwarfs.

1989 ◽  
Vol 131 ◽  
pp. 545-554
Author(s):  
James Liebert

Studies of hot white dwarf samples constrain the properties and evolution of planetary nuclei and the nebulae. In particular, the white dwarf and planetary nebulae formation rates are compared. I discuss the overlap of the sequences of white dwarfs having hydrogen (DA) and helium-rich (DO) atmospheres with known central stars of high surface gravity. There is evidence that the hydrogen atmosphere nuclei have “thick” outer hydrogen layers (≳ 10−4 M⊙), but that DA white dwarfs may have surface hydrogen layers orders of magnitude thinner. Finally, a DA planetary nucleus is discussed (0950+139) which has undergone a late nebular ejection; this object may be demonstrating that a hydrogen layer can be lost even after the star has entered the white dwarf cooling sequence.


1983 ◽  
Vol 103 ◽  
pp. 375-390
Author(s):  
Sara R. Heap

Despite similar evolutionary histories and a common ultimate fate as white dwarfs, central stars of planetary nebulae have surprisingly diverse spectral properties. Their visual spectral types encompass all varieties known for hot stars, including Wolf-Rayet, O and Of, subdwarf O, white-dwarf, and continuous (Aller 1968, 1976), and O VI-emission types (Smith and Aller 1969, Heap 1982). Their spectroscopic temperatures range from less than 30,000°K (e.g. He 2-138, Mendez and Niemela 1979; the WC 11 stars, Houziaux and Heck 1982) to upwards to 150,000°K or more (e.g. NGC 246, Heap 1975; Abell 30, Greenstein 1981). Their atmospheres range from demonstrably helium- and carbon-rich (e.g. the WR stars, Barlow and Hummer 1982, Benvenutı et al. 1982) to apparently normal (e.g. the Of stars, Heap 1977a,b), to helium-poor (e.g. the nascent white dwarfs in Abell 7 and NGC 7293, where gravitational settling appears to have already taken effect, Mendez et al. 1981).


1991 ◽  
Vol 145 ◽  
pp. 399-409
Author(s):  
Francesca D'antona ◽  
Italo Mazzitelli

In the present review we summarize the problems relative to the chemical composition of the inner and outer layers of white dwarfs as expected from stellar evolution. We point out that there is a contrast between standard predictions and the indications deriving from studies of white dwarfs, as “massive” hydrogen remnat layers seem not to be present on single white dwarfs. We discuss a previously neglected feature of stellar models in the phase of thermal pulses -which occurs when the outer hydrogen envelope becomes very small- by which the progenitors of low total mass may get rid of practically the whole hydrogen envelope during the final phases of asymptotic giant branch evolution. We finally propose a new global scheme for the pre-white dwarf evolution, which depends mainly on the initial progenitor mass.


1971 ◽  
Vol 42 ◽  
pp. 130-135 ◽  
Author(s):  
K. H. Böhm ◽  
J. Cassinelli

Outer convection zones of white dwarfs in the range 5800 K ≤ Teff ≤ 30000 K have been studied assuming that they have the same chemical composition as determined by Weidemann (1960) for van Maanen 2. Convection is important in all these stars. In white dwarfs Teff < 8000 K the adiabatic temperature gradient is strongly influenced by the pressure ionization of H, HeI and HeII which occurs within the convection zone. Partial degeneracy is also important.Convective velocities are very small for cool white dwarfs but they reach considerable values for hotter objects. For a white dwarf of Teff = 30000 K a velocity of 6.05 km/sec and an acoustic flux (generated by the turbulent convection) of 1.5 × 1011 erg cm−2 sec−1 is reached. The formation of white dwarf coronae is briefly discussed.


1989 ◽  
Vol 131 ◽  
pp. 463-472 ◽  
Author(s):  
Detlef Schönberner

Our understanding of the evolution of Central Stars of Planetary Nebulae (CPN) has made considerable progress during the last years. This was possible since consistent computations through the asymptotic giant branch (AGB), with thermal pulses and (in some cases) mass loss taken into account, became available (Schönberner, 1979, 1983; Kovetz and Harpaz, 1981; Harpaz and Kovetz, 1981; Iben, 1982, 1984; Wood and Faulkner, 1986). It turned out that the evolution depends very sensitively on the inital conditions on the AGB. More precisely, the evolution of an AGB remnant is a function of the phase of the thermal-pulse cycle during which this remnant was created on the tip of the AGB by the planetary-nebula (PN) formation process (Iben, 1984, 1987). This was first shown by Schönberner (1979), and then fully explored by Iben (1984). In short, two major modes of PAGB evolution to the white dwarf stage are possible, according to the two main phases of a thermally pulsing AGB star: the hydrogen-burning or helium-burning mode. If, for instance, the PN formation, i.e. the removal of the stellar envelope by mass loss, happens during a luminosity peak that follows a thermal pulse of the helium-burning shell, the remnant leaves the AGB while still burning helium as the main energy supplier (Härm and Schwarzschild, 1975). On the other hand, PN formation may also occur during the quiescent hydrogen-burning phase on the AGB, and the remnant continues then to burn mainly hydrogen on its way to becoming a white dwarf.


2019 ◽  
Vol 15 (S357) ◽  
pp. 119-122
Author(s):  
S. Charpinet ◽  
P. Brassard ◽  
N. Giammichele ◽  
Gilles Fontaine

AbstractGiammichele et al. (2018) proposed a full determination, largely independent of evolution calculations, of the chemical composition and stratification inside the hot pulsating DB white dwarf KIC 08626021. However, Timmes et al. (2018) pointed out that neglecting the effects of neutrino cooling, such as in the static models used in Giammichele et al. study, could impact significantly the derived seismic solution and compromise conclusions drawn upon it. Here we present a reanalysis of KIC 08626021, using improved static models which now incorporate more realistic luminosity profiles that reflect the still significant energy losses induced by neutrino emission mechanisms in hot DB white dwarfs. We show that this effect has only a limited impact on the derived seismic model properties and, more importantly, that all the conclusions brought by Giammichele et al. (2018) remain entirely valid.


1997 ◽  
Vol 180 ◽  
pp. 287-287
Author(s):  
N. A. Walton ◽  
J. R. Walsh ◽  
G. Dudziak

The Abell catalogue of planetary nebulae (PN) are distinguished by their large size, low surface brightness and generally faint central stars. They are thought to be old PN approaching the White Dwarf cooling track. A number have evidence for late thermal pulses (H-poor ejecta near the central star, e.g. A78) and binary central stars.


1971 ◽  
Vol 42 ◽  
pp. 67-76 ◽  
Author(s):  
J. B. Oke ◽  
H. L. Shipman

White dwarf stars are among the most challenging and interesting objects which can be studied. Because they represent the interiors of highly-evolved stars, the chemical composition can be enormously variable from object to object. Furthermore, because of the very large gravities, the composition of the atmosphere may be very different from that in the interior. The theory of the degenerate interior provides a relation among mass, radius and chemical composition. Since temperatures, effective gravities, and redshifts can, for certain stars, provide further relations between mass and radius, one can hope to make checks on the theory which are not possible with ordinary stars.


1997 ◽  
Vol 180 ◽  
pp. 132-132
Author(s):  
T. Rauch ◽  
J. Köppen ◽  
R. Napiwotzki ◽  
K. Werner

Very hot central stars (CSPN) of highly excited planetary nebulae (PN) display directly the formation of white dwarfs. Only a few of these CSPN have been analyzed so far due to their low brightness and thus, the interpretation of their evolutionary status is hampered by statistical incompleteness. In the last decade many spectral analyses of very hot post-AGB stars by means of state-of-the-art NLTE model atmospheres have been performed (e.g. Rauch et al. 1996; Werner & Rauch 1994; Rauch & Werner 1995) and our picture of post-AGB evolution has been improved.


2011 ◽  
Vol 7 (S283) ◽  
pp. 494-495
Author(s):  
Christer Sandin ◽  
Matthias Steffen ◽  
Ralf Jacob ◽  
Detlef Schönberner ◽  
Ute Rühling ◽  
...  

AbstractX-ray observations of young Planetary Nebulæ (PNe) have revealed diffuse emission in extended regions around both H-rich and H-deficient central stars. In order to also reproduce physical properties of H-deficient objects, we have, at first, extended our time-dependent radiation-hydrodynamic models with heat conduction for such conditions. Here we present some of the important physical concepts, which determine how and when a hot wind-blown bubble forms. In this study we have had to consider the, largely unknown, evolution of the CSPN, the slow (AGB) wind, the fast hot-CSPN wind, and the chemical composition. The main conclusion of our work is that heat conduction is needed to explain X-ray properties of wind-blown bubbles also in H-deficient objects.


Sign in / Sign up

Export Citation Format

Share Document