scholarly journals NLTE analysis of central stars of highly excited Planetary Nebulae

1997 ◽  
Vol 180 ◽  
pp. 132-132
Author(s):  
T. Rauch ◽  
J. Köppen ◽  
R. Napiwotzki ◽  
K. Werner

Very hot central stars (CSPN) of highly excited planetary nebulae (PN) display directly the formation of white dwarfs. Only a few of these CSPN have been analyzed so far due to their low brightness and thus, the interpretation of their evolutionary status is hampered by statistical incompleteness. In the last decade many spectral analyses of very hot post-AGB stars by means of state-of-the-art NLTE model atmospheres have been performed (e.g. Rauch et al. 1996; Werner & Rauch 1994; Rauch & Werner 1995) and our picture of post-AGB evolution has been improved.

1993 ◽  
Vol 155 ◽  
pp. 91-91
Author(s):  
R.W. Tweedy

A high-resolution IUE spectral atlas of central stars of planetary nebulae and hot white dwarfs has been produced (part of Tweedy, 1991, PhD thesis from the University of Leicester, UK), and examples from it are shown here. It has been sorted into an approximate evolutionary sequence, based on published spectroscopic analyses, from the cool 28,000K young central star He 2–138, through the hot objects like NGC 7293 and NGC 246 at 90,000K and 130,000K respectively, down to 40,000K DA white dwarfs like GD 2, which is the chosen cutoff for this selection. Copies of a revised version of this atlas, which will include more recent spectroscopic information and also white dwarfs down to 35,000K – to include the Si III object GD 394 – will be sent to anyone who requests one.


2003 ◽  
Vol 209 ◽  
pp. 211-214
Author(s):  
Ralf Napiwotzki

Results of a spectroscopic investigation of central stars of old planetary nebulae (PNe) are reported. The evolutionary status of the central stars is discussed and it is shown that most are in good agreement with standard post-AGB evolution, but some are best explained as descendents from the first RGB after binary interaction. The distance scale of PNe is discussed.


2011 ◽  
Vol 7 (S283) ◽  
pp. 482-483
Author(s):  
Nicole Reindl ◽  
Ellen Ringat ◽  
Thomas Rauch ◽  
Klaus Werner ◽  
Jeffrey. W. Kruk

AbstractThe four known O(He) stars are the only amongst the hottest post-AGB stars whose atmospheres are composed of almost pure helium. Thus, their evolution deviates from the hydrogen-deficient post-AGB evolutionary sequence of carbon-dominated stars like e.g. PG 1159 stars. The origin of the O(He) stars is still not explained. They might be either post-early AGB stars or the progeny of R Coronae Borealis stars. We present preliminary results of a non-LTE spectral analysis based on FUSE and HST/COS observations.


2011 ◽  
Vol 7 (S283) ◽  
pp. 211-214
Author(s):  
Marc Ziegler ◽  
Thomas Rauch ◽  
Klaus Werner ◽  
Jeffrey W. Kruk

AbstractWe present results of a (F)UV spectral analysis of 15 hot, hydrogen-rich central stars of planetary nebulae (CSPNe) of DAO-type (A 7, A 31, A 35, A 39, NGC 3587, NGC 6720, NGC 6853, NGC 7293, PuWe 1, Sh 2-174) and O(H)-type (A 36, Lo 1, LSS 1362, NGC 1360, NGC 4361). The sample covers a wide range of parameters (Teff ≈ 70–130 kK, log g = 5.4–7.4). It represents different stages of post-AGB evolution. The derived stellar parameters are crucial constraints for AGB nucleosynthesis and stellar evolutionary calculations. Detailed spectral analyses using fully line-blanketed NLTE model atmospheres including 23 elements from hydrogen to nickel are performed. Additional modeling of the ISM line absorption enables to unambigiously identify nearly all observed lines and to improve both, the photospheric as well as the ISM model.


1985 ◽  
Vol 87 ◽  
pp. 498-506
Author(s):  
J.S. Drilling ◽  
P.W. Hill

The following four tables were originally presented as part of the paper entitled ‘Basic Data on Hydrogen-Deficient Stars’ by J. S. Drilling, which appears earlier in this volume. A number of corrections and additions have been made by the participants, mostly by P. W. Hill using the SIMBAD data base. A much improved version of the catalog therefore follows. Helium-rich central stars of planetary nebulae, helium-rich white dwarfs, and Wolf-Rayet stars are not included. A complete list of helium-rich central stars is given by Mendez et al. elsewhere in this volume.


2019 ◽  
Vol 630 ◽  
pp. A150 ◽  
Author(s):  
I. González-Santamaría ◽  
M. Manteiga ◽  
A. Manchado ◽  
A. Ulla ◽  
C. Dafonte

Context. We have compiled a catalogue of central stars of planetary nebulae (CSPN) with reliable distances and positions obtained from Gaia Data Release 2 (DR2) astrometry. Distances derived from parallaxes allow us to analyse the galactic distribution and estimate other parameters such as sizes, kinematical ages, bolometric magnitudes, and luminosities. Aims. Our objective is to analyse the information regarding distances together with other available literature data about photometric properties, nebular kinematics, and stellar effective temperatures to throw new light on this rapid and rather unknown evolutionary phase. We seek to understand how Gaia distances compare with other indirect methods commonly used and, in particular, with those derived from non-local thermodynamic equilibrium (non-LTE) models; how many planetary nebulae (PNe) populate the Galaxy; and how are they spatially distributed. We also aim to comprehend their intrinsic luminosities, range of physical sizes of the nebulae; how to derive the values for their kinematical ages; and whether those ages are compatible with those derived from evolutionary models. Methods. We considered all PNe listed in catalogues from different authors and in Hong Kong/AAO/Strasbourg/Hα (HASH) database. By X-matching their positions with Gaia DR2 astrometry we were able to identify 1571 objects in Gaia second archive, for which we assumed distances calculated upon a Bayesian statistical approach. From those objects, we selected a sample of PNe with good quality parallax measurements and distance derivations, we which refer to as our Golden Astrometry PNe sample (GAPN), and obtained literature values of their apparent sizes, radial and expansion velocities, visual magnitudes, interstellar reddening, and effective temperatures. Results. We found that the distances derived from DR2 parallaxes compare well with previous astrometric derivations of the United States Naval Observatory and Hubble Space Telescope, but that distances inferred from non-LTE model fitting are overestimated and need to be carefully reviewed. From literature apparent sizes, we calculated the physical radii for a subsample of nebulae that we used to derive the so-called kinematical ages, taking into account literature expansion velocities. Luminosities calculated with DR2 distances were combined with literature central stars Teff values in a Hertzsprung–Russell (HR) diagram to infer information on the evolutionary status of the nebulae. We compared their positions with updated evolutionary tracks finding a rather consistent picture. Stars with the smallest associated nebular radii are located in the flat luminosity region of the HR diagram, while those with the largest radii correspond to objects in a later stage, getting dimmer on their way to become a white dwarf. Finally, we commented on the completeness of our catalogue and calculated an approximate value for the total number of PNe in the Galaxy.


2016 ◽  
Vol 12 (S323) ◽  
pp. 179-183
Author(s):  
Marcelo M. Miller Bertolami

AbstractThe post-asymptotic giant branch (AGB) phase is arguably one of the least understood phases of the evolution of low- and intermediate- mass stars. The recent post-AGB evolutionary sequences computed by Miller Bertolami (2016) are at least three to ten times faster than those previously published by Vassiliadis & Wood (1994) and Blöcker (1995) which have been used in a large number of studies. This is true for the whole mass and metallicity range. The new models are also ~0.1–0.3 dex brighter than the previous models with similar remnant masses. In this short article we comment on the main reasons behind these differences, and discuss possible implications for other studies of post-AGB stars or planetary nebulae.


2003 ◽  
Vol 209 ◽  
pp. 315-315
Author(s):  
A. K. Speck ◽  
A. M. Hofmeister

Some proto-planetary nebulae (PPNe) exhibit an enigmatic feature in their infrared (IR) spectra at ~21 μm. PPNe which display this feature are all C-rich and all show evidence for s-process enhancements in their photospheres, indicative of efficient dredge-up during the ascent of the asymptotic giant branch (AGB). Furthermore, this 21 μm feature is not seen in the spectra of either the precursors to PPNe, the AGB stars, or the successors of PPNe, planetary nebulae (PNe). However the 21 μm feature has been seen in the spectra of PNe with Wolf-Rayet central stars. Therefore the carrier of this feature is unlikely to be a transient species that only exists in the PPNe phase. It is more likely that the physical conditions in the AGB stars and PNe conspire against the observation of an IR feature at 21 μm. This feature has been attributed to various molecular and solid state species, none of which satisfy all constraints, although TiC and PAHs have seemed the most viable.


1989 ◽  
Vol 131 ◽  
pp. 545-554
Author(s):  
James Liebert

Studies of hot white dwarf samples constrain the properties and evolution of planetary nuclei and the nebulae. In particular, the white dwarf and planetary nebulae formation rates are compared. I discuss the overlap of the sequences of white dwarfs having hydrogen (DA) and helium-rich (DO) atmospheres with known central stars of high surface gravity. There is evidence that the hydrogen atmosphere nuclei have “thick” outer hydrogen layers (≳ 10−4 M⊙), but that DA white dwarfs may have surface hydrogen layers orders of magnitude thinner. Finally, a DA planetary nucleus is discussed (0950+139) which has undergone a late nebular ejection; this object may be demonstrating that a hydrogen layer can be lost even after the star has entered the white dwarf cooling sequence.


1978 ◽  
Vol 76 ◽  
pp. 353-353 ◽  
Author(s):  
V. Weidemann

The present-day birth rate of planetary nebulae, 5·10−12 PN/pc3yr according to Cahn and Wyatt (1976), seems somewhat high compared to white dwarfs, for which a redetermination, including the statistics of Sion and Liebert (1977), yields 2·10−12 WD/pc3yr to within a factor of two. However, an increase of the distance scale for PN by a factor of 1.3 compared to Seaton (1968) - necessary in order to shift the extremum of PN radial velocities to the distance of the galactic center (9 kpc), and to increase the luminosities of the central stars from the position given by Pottasch et al. (1977) to a minimum value compatible with evolutionary constraints (Weidemann, 1977a) - brings birth rates of PN and WD into almost complete agreements.


Sign in / Sign up

Export Citation Format

Share Document