scholarly journals Spectroscopic Investigations of Herbig-Ae-Be-Stars

1982 ◽  
Vol 98 ◽  
pp. 501-507
Author(s):  
Ulrich Finkenzeller

“Herbig-Ae-Be-Stars” are assumed to be pre-main sequence objects of moderate mass with line emitting envelopes of an unknown nature. From our present theoretical knowledge it is not clear whether the physical structure of these envelopes is dominated by mass accretion or mass loss induced by a stellar wind or radiation pressure effects. Radial velocities and remarks on peculiarities are given for the star HD 200 775, which seems to represent a typical Herbig-Ae-Be-star fairly well. A catalogue of about 60 supposed Herbig-Ae-Be-stars is presented and comments, in particular on the brighter members, are invited.

1982 ◽  
Vol 98 ◽  
pp. 501-507
Author(s):  
Ulrich Finkenzeller

“Herbig-Ae-Be-Stars” are assumed to be pre-main sequence objects of moderate mass with line emitting envelopes of an unknown nature. From our present theoretical knowledge it is not clear whether the physical structure of these envelopes is dominated by mass accretion or mass loss induced by a stellar wind or radiation pressure effects. Radial velocities and remarks on peculiarities are given for the star HD 200 775, which seems to represent a typical Herbig-Ae-Be-star fairly well. A catalogue of about 60 supposed Herbig-Ae-Be-stars is presented and comments, in particular on the brighter members, are invited.


1999 ◽  
Vol 169 ◽  
pp. 312-319
Author(s):  
Dietrich Baade

If observing time and number of photons are not the limit, it will probably be very difficult to find any Be star or BA supergiant that is not variable. Moreover, there is hardly any major set of observations that is not tempting to explain at least partly in terms of nonradial (g-mode) pulsations. Since a few years ago, such conjectures are also theoretically permissible because improved opacity calculations have established the classical к-mechanism as a viable source of pulsation driving (cf. Pamyatnykh, these proceedings).Contrary to Be stars, it can for any given BA supergiant nevertheless be arbitrarily difficult to diagnose nonradial pulsations (NRP’s) with certainty because they need to be detected against considerable background ‘noise’ of other physical processes, most of which are related to mass loss and/or rotation. To make things worse, there is some evidence that NRP’s can have some effect on the dynamics of the mass loss. On the other hand, variable and non-spherical winds is the subject of this Colloquium, and this paper is accordingly biased towards the interplay between pulsation and mass loss.


1989 ◽  
Vol 113 ◽  
pp. 195-204
Author(s):  
I. Appenzeller

AbstractAs LBVs have luminosities close to their Eddington limits, their structure is profoundly influenced by radiation pressure. Radiation pressure effects probably cause the highly extended atmospheres and the extreme mass loss observed during the maximum states of the S Dor variables. An opacity-related instability of the radiative acceleration combined with a delayed thermal readjustement of the sub-atmospheric layers possibly explains the large-amplitude radius variations of these objects.


2000 ◽  
Vol 175 ◽  
pp. 344-347
Author(s):  
M. Pogodin

AbstractNew results of high-resolution spectroscopy of four pre-main sequence Ae/Be stars are presented. An analysis of parameters of lines originating in different regions of the circumstellar (CS) envelope (Hα, Hβ, He I 5876, DNal) allows to reconstruct a picture of the interaction between the star and the CS environment which can be displayed in different forms. At least two separate processes seem to impact the structural and kinematical properties of the envelope: the stellar wind from the stellar surface and the matter infall onto the star from the CS media. A possible relation between these two phenomena is discussed in the framework of different models. Some similarity between observational phenomena in Herbig Ae/Be and classical Be stars is noted in spite of their difference in evolutionary status.


2000 ◽  
Vol 175 ◽  
pp. 63-66
Author(s):  
Gemma Capilla ◽  
Juan Fabregat ◽  
Deborah Baines

AbstractWe present CCD Hα and Hβ photometry of young open clusters. We show that the comparison of the α and β photometric indices provides an efficient tool for identifying emission line stars. We report on the discovery of several new Be stars.The preliminary results of our survey are the following: i. the younger clusters (age < 10 Myr) are almost lacking of Be stars, ii. clusters in the age interval 10–30 Myr are rich in Be stars. Almost all of them are of spectral types earlier than B5, while late-type Be stars are scarce. These results point towards an evolutionary interpretation of the Be phenomenon, in the sense that Be stars are close to the end of their main sequence lifetime.


1982 ◽  
Vol 98 ◽  
pp. 247-251
Author(s):  
P. Persi ◽  
M. Ferrari-Toniolo ◽  
G.L. Grasdalen

Preliminary results of our infrared observations from 2.3 up to 10 and 20 microns of the Be-X-ray stars X Per, γ Cas and HDE 245770, indicate the presence of an ionized circumstellar disk with an electron density law of the type ne ∝ r−3.5. x Per and γ Cas show besides, variable infrared excess at 10μ suggesting variability in the stellar wind. LS I+65°010 presents an anomalous infrared energy distribution for a Be star.


1970 ◽  
Vol 36 ◽  
pp. 236-237
Author(s):  
Philip M. Solomon

The rocket-ultraviolet observations of strong Doppler-shifted absorption lines of Siiv, Civ, Nv and other ions in the spectrum of O and B supergiants clearly indicate a high velocity outflow of matter from these stars. The presence of moderate ionisation stages in the stellar wind is conclusive evidence that the flow cannot be due to a high temperature corona as is the case for the solar wind. It is shown that the driving mechanism for the hot-star mass loss is radiation pressure exerted on the gas through absorption in resonance lines occurring at wavelengths near the maximum of the star's continuum flux. In the upper layers of these stars the outward force per gram of matter due to the radiation pressure can greatly exceed the gravitational acceleration making a static atmosphere impossible.The problem of a steady-state moving reversing layer is formulated and the solution leads to predictions of mass-loss rates as a function of effective temperature and gravity for all hot stars. These results are in substantial agreement with the observations.


1994 ◽  
Vol 162 ◽  
pp. 287-298 ◽  
Author(s):  
Hideyuki Saio

We discuss the connection between the periodic light variations and the equatorial mass loss of Be stars. The observed properties of the short period (~ day) variations seem to indicate that they arise in the photosphere. An upper limit for the surface magnetic field of Be stars is derived from the rate of angular momentum loss expected from the typical mass loss-rate in Be stars. The upper limit suggests that surface magnetic fields of Be stars are too weak to make a spot. We argue that the periodic variations of Be stars are explained by nonradial pulsations whose periods on the stellar surface are much longer than the rotation period. They transport angular momentum from the core to the envelope to accelerate the surface regions. If this mechanism works sufficiently well, the rotation speed near the surface will reach to the critical velocity and an excretion disk will be formed around the star. A simple model for a steady-state excretion disk around a Be star is found to be consistent with the density structure inferred from the IR fluxes.


1979 ◽  
Vol 83 ◽  
pp. 235-240 ◽  
Author(s):  
David C. Abbott

Previous work by Castor, Abbott, and Klein (1975) presented a self-consistent model of a steady-state stellar wind. They also showed qualitatively that for O stars at least a static atmosphere could not exist. This paper extends that result by calculating in detail the minimum luminosity as a function of effective temperature required for the line radiation force to exceed gravity. Within the observational and theoretical uncertainty there is a one-to-one correspondence between a star's calculated ability to self-initiate a stellar wind by radiation pressure alone and the observed presence of outflowing material in the UV resonance lines.


1976 ◽  
Vol 70 ◽  
pp. 179-189 ◽  
Author(s):  
J. M. Marlborough ◽  
Theodore P. Snow

Ultraviolet spectra of intermediate resolution have been obtained with Copernicus of twelve objects classified as Be or shell stars, and an additional 19 dwarfs of spectral classes B0-B4. Some of these spectra show marked asymmetries in certain resonance lines, especially the Si iv doublet at λ 1400 Å, indicating the presence of outflowing material with maximum velocities of nearly 1000 km s−1. Direct evidence for mass loss at these velocities is seen for the first time in dwarf stars as late as B1.5. Later than B0.5, the only survey objects showing this phenomenon are Be stars. Among the stars considered there is a correlation between the presence of mass-loss effects and projected rotational velocity, suggesting that the UV flux from B1-B3 dwarfs is sufficient to drive high-velocity stellar winds only if rotation reduces the effective gravity near the equator. The role of mass-loss in producing the Be star phenomenon and the effects of rotation on mass loss are discussed.


Sign in / Sign up

Export Citation Format

Share Document