scholarly journals Enrichment by Wolf-Rayet Stars and Other Massive Stars in Gas, Dust and Energy

1991 ◽  
Vol 143 ◽  
pp. 323-334
Author(s):  
Martin Cohen

I update previous estimates of the separate contributions for radiative energy, integrated total stellar wind mass and dust mass from Wolf-Rayet stars and other massive (OBA) stars. In the context of the intriguing dusty WC9 stars, I: (1) discuss the observability (or otherwise) between 0.4 and 23 μm of the condensation route from hot gas to carbon-rich grains; (2) urge caution in the use of 10 μm infrared spectra of these luminous stars to deduce the importance of silicates as a component of the interstellar medium, and (3) speculate on a possible new method for discovering new members of this relatively rare subtype based on IRAS Low Resolution Spectra. I review the observational evidence for dust condensation around SN 1987A.

2018 ◽  
Vol 619 ◽  
pp. A120 ◽  
Author(s):  
Martin G. H. Krause ◽  
Andreas Burkert ◽  
Roland Diehl ◽  
Katharina Fierlinger ◽  
Benjamin Gaczkowski ◽  
...  

Context. Feedback by massive stars shapes the interstellar medium and is thought to influence subsequent star formation. The details of this process are under debate. Aims. We exploited observational constraints on stars, gas, and nucleosynthesis ashes for the closest region with recent massive-star formation, Scorpius–Centaurus OB2, and combined them with three-dimensional (3D) hydrodynamical simulations in order to address the physics and history of the Scorpius–Centaurus superbubble. Methods. We used published cold gas observations of continuum and molecular lines from Planck, Herschel, and APEX. We analysed the Galactic All Sky Survey (GASS) to investigate shell structures in atomic hydrogen, and used Hipparcos and Gaia data in combination with interstellar absorption against stars to obtain new constraints for the distance to the Hi features. Hot gas is traced in soft X-rays via the ROSAT all sky survey. Nucleosynthesis ejecta from massive stars were traced with new INTEGRAL spectrometer observations via 26Al radioactivity. We also performed 3D hydrodynamical simulations for the Sco–Cen superbubble. Results. Soft X-rays and a now more significant detection of 26Al confirm recent (≈1 Myr ago) input of mass, energy, and nucleosynthesis ejecta, likely from a supernova in the Upper Scorpius (USco) subgroup. We confirm a large supershell around the entire OB association and perform a 3D hydrodynamics simulation with a conservative massive star population that reproduces the morphology of the superbubble. High-resolution GASS observations reveal a nested, filamentary supershell. The filaments are possibly related to the Vishniac clumping instability, but molecular gas (Lupus I) is only present where the shell coincides with the connecting line between the subgroups of the OB association, suggesting a connection to the cloud, probably an elongated sheet, out of which the OB association formed. Stars have formed sequentially in the subgroups of the OB association and currently form in Lupus I. To investigate the impact of massive star feedback on extended clouds, we simulate the interaction of a turbulent cloud with the hot, pressurised gas in a superbubble. The hot gas fills the tenuous regions of the cloud and compresses the denser parts. Stars formed in these dense clumps would have distinct spatial and kinematic distributions. Conclusions. The combined results from observations and simulations are consistent with a scenario where dense gas was initially distributed in a band elongated in the direction now occupied by the OB association. Superbubbles powered by massive stars would then repeatedly break out of the elongated parent cloud, and surround and squash the denser parts of the gas sheet and thus induce more star formation. The expected spatial and kinematic distribution of stars is consistent with observations of Sco–Cen. The scenario might apply to many similar regions in the Galaxy and also to active galactic nucleus (AGN)-related superbubbles.


1981 ◽  
Vol 59 ◽  
pp. 229-253
Author(s):  
C. Chiosi

In the past few years both growing observational evidence and theoretical understanding have shown that mass loss by stellar wind is a common occurrence in the evolutionary history of many types of star. Recent reviews on the subject may be found in Conti (1978), Cassinelli (1979), Conti and Mc Cray (1980), Hutchings (1980a), de Loore (1979, 1980) and Sreenivasan (1979).Therefore, in this paper we will concentrate only on those observational and theoretical aspects of the problem that demand further investigation.


2020 ◽  
Vol 495 (3) ◽  
pp. 3041-3051
Author(s):  
J A Toalá ◽  
M A Guerrero ◽  
H Todt ◽  
L Sabin ◽  
L M Oskinova ◽  
...  

ABSTRACT We present a multiwavelength study of the iconic Bubble Nebula (NGC 7635) and its ionizing star BD+60○2522. We obtained XMM–Newton EPIC X-ray observations to search for extended X-ray emission as in other similar wind-blown bubbles around massive stars. We also obtained San Pedro Mártir spectroscopic observations with the Manchester Echelle Spectrometer to study the dynamics of the Bubble Nebula. Although our EPIC observations are deep, we do not detect extended X-ray emission from this wind-blown bubble. On the other hand, BD+60○2522 is a bright X-ray source similar to other O stars. We used the stellar atmosphere code PoWR to characterize BD+60○2522 and found that this star is a young O-type star with stellar wind capable of producing a wind-blown bubble that in principle could be filled with hot gas. We discussed our findings in line with recent numerical simulations proposing that the Bubble Nebula has been formed as the result of the fast motion of BD+60○2522 through the medium. Our kinematic study shows that the Bubble Nebula is composed by a series of nested shells, some showing blister-like structures, but with little signatures of hydrodynamical instabilities that would mix the material producing diffuse X-ray emission as seen in other wind-blown bubbles. Its morphology seems to be merely the result of projection effects of these different shells.


2003 ◽  
Vol 212 ◽  
pp. 585-595 ◽  
Author(s):  
You-Hua Chu

Massive stars evolve across the H-R diagram, losing mass along the way and forming a variety of ring nebulae. During the main sequence stage, the fast stellar wind sweeps up the ambient interstellar medium to form an interstellar bubble. After a massive star evolves into a red giant or a luminous blue variable, it loses mass copiously to form a circumstellar nebula. As it evolves further into a WR star, the fast WR wind sweeps up the previous mass loss and forms a circumstellar bubble. Observations of ring nebulae around massive stars not only are fascinating, but also are useful in providing templates to diagnose the progenitors of supernovae from their circumstellar nebulae. In this review, I will summarize the characteristics of ring nebulae around massive stars throughout the H-R diagram, show recent advances in X-ray observations of bubble interiors, and compare supernovae's circumstellar nebulae with known types of ring nebulae around massive stars.


2012 ◽  
Vol 8 (S292) ◽  
pp. 284-284
Author(s):  
Laure Ciesla ◽  

AbstractThe Herschel Reference Survey is a guaranteed time key project aimed at studying the physical properties of the interstellar medium (ISM) of 323 nearby galaxies, covered by multi-wavelength data. This volume limited, K-band selected sample is composed of galaxies spanning the whole range of morphological types and environments. We conduct a statistical study on the ISM properties of nearby galaxies based on the analysis of their SED. To achieve this goal, we fit the data with the models of Draine & Li (2007) to obtain the intensity of interstellar radiation field, the PAH abundance, the contribution of photodissociation regions, and the dust mass.


2015 ◽  
Vol 12 (S316) ◽  
pp. 294-301
Author(s):  
Richard Wünsch ◽  
Jan Palouš ◽  
Guillermo Tenorio-Tagle ◽  
Casiana Muñoz-Tuñón ◽  
Soňa Ehlerová

AbstractMassive stars in young massive clusters insert tremendous amounts of mass and energy into their surroundings in the form of stellar winds and supernova ejecta. Mutual shock-shock collisions lead to formation of hot gas, filling the volume of the cluster. The pressure of this gas then drives a powerful cluster wind. However, it has been shown that if the cluster is massive and dense enough, it can evolve in the so–called bimodal regime, in which the hot gas inside the cluster becomes thermally unstable and forms dense clumps which are trapped inside the cluster by its gravity. We will review works on the bimodal regime and discuss the implications for the formation of subsequent stellar generations. The mass accumulates inside the cluster and as soon as a high enough column density is reached, the interior of the clumps becomes self-shielded against the ionising radiation of stars and the clumps collapse and form new stars. The second stellar generation will be enriched by products of stellar evolution from the first generation, and will be concentrated near the cluster center.


1991 ◽  
Vol 143 ◽  
pp. 567-570
Author(s):  
Nino Panagia ◽  
Victoria G. Laidler

We argue that the progenitors of type Ib supernovae are moderately massive stars (M ~ 7 M⊙) in binary systems whereas the hypothesis that they originate from very massive stars (M > 20 M⊙) is not consistent with the observational evidence on SNIb.


1999 ◽  
Vol 193 ◽  
pp. 636-644
Author(s):  
Elias Brinks ◽  
Fabian Walter

Neutral hydrogen (H I) is a magnificent tool when studying the structure of the interstellar medium (ISM) as it is relatively easily observable and can be mapped at good spatial and velocity resolution with modern instruments. Moreover, it traces the cool (∼ 100 K) and warm (∼ 5000 K) neutral gas which together make up about 60%, or the bulk, of the ISM. The currently accepted picture is that stellar winds and subsequent supernovae are the origin for the clearly defined holes or bubbles within the more or less smooth neutral medium. The H I can therefore serve indirectly as a tracer of the hot interstellar medium (HIM) left behind after the most massive stars within an OB association have gone off as supernovae. A splendid example is the dwarf galaxy IC 2574 for which we discuss H I, optical and X-ray observations.


Sign in / Sign up

Export Citation Format

Share Document