scholarly journals The Rosetta Mission to Primitive Bodies of the Solar System

1994 ◽  
Vol 160 ◽  
pp. 381-394
Author(s):  
Yves Langevin

The European Space Agency (ESA) has selected Rosetta as the next cornerstone mission, to be launched in 2003. The goal is to perfom one or more fly-bys to main belt asteroids, followed by a rendez-vous with an active comet. Advanced in situ analysis, both in the coma and on the surfaces of the nucleus, will be possible, as well as monitoring by remote sensing instruments of the nucleus and of the inner coma for a time span of more than one year, until perihelion. This paper outlines the scientific and technological choices done in the definition of the mission.

2018 ◽  
Vol 10 (11) ◽  
pp. 1839 ◽  
Author(s):  
A. Al-Yaari ◽  
S. Dayau ◽  
C. Chipeaux ◽  
C. Aluome ◽  
A. Kruszewski ◽  
...  

Global soil moisture (SM) products are currently available thanks to microwave remote sensing techniques. Validation of these satellite-based SM products over different vegetation and climate conditions is a crucial step. INRA (National Institute of Agricultural Research) has set up the AQUI SM and soil temperature in situ network (composed of three main sites Bouron, Bilos, and Hermitage), over a flat area of dense pine forests, in South-Western France (the Bordeaux–Aquitaine region) to validate the Soil Moisture and Ocean salinity (SMOS) satellite SM products. SMOS was launched in 2009 by the European Space Agency (ESA). The aims of this study are to present the AQUI network and to evaluate the SMOS SM product (in the new SMOS-IC version) along with other microwave SM products such as the active ASCAT (Advanced Scatterometer) and the ESA combined (passive and active) CCI (Climate Change Initiative) SM retrievals. A first comparison, using Pearson correlation, Bias, RMSE (Root Mean Square Error), and Un biased RMSE (ubRMSE) scores, between the 0–5 cm AQUI network and ASCAT, CCI, and SMOS SM products was conducted. In general all the three products were able to reproduce the annual cycle of the AQUI in situ observations. CCI and ASCAT had best and similar correlations (R~0.72) over the Bouron and Bilos sites. All had comparable correlations over the Hermitage sites with overall average values of 0.74, 0.68, and 0.69 for CCI, SMOS-IC, and ASCAT, respectively. Considering anomalies, correlation values decreased for all products with best ability to capture day to day variations obtained by ASCAT. CCI (followed by SMOS-IC) had the best ubRMSE values (mostly < 0.04 m3/m3) over most of the stations. Although the region is highly impacted by radio frequency interferences, SMOS-IC followed correctly the in situ SM dynamics. All the three remotely-sensed SM products (except SMOS-IC over some stations) overestimated the AQUI in situ SM observations. These results demonstrate that the AQUI network is likely to be well-suited for satellite microwave remote sensing evaluations/validations.


2019 ◽  
Vol 630 ◽  
pp. A29 ◽  
Author(s):  
Isaac R. H. G. Schroeder I ◽  
Kathrin Altwegg ◽  
Hans Balsiger ◽  
Jean-Jacques Berthelier ◽  
Johan De Keyser ◽  
...  

The European Space Agency spacecraft Rosetta accompanied the Jupiter-family comet 67P/Churyumov-Gerasimenko for over 2 yr along its trajectory through the inner solar system. Between 2014 and 2016, it performed almost continuous in situ measurements of the comet’s gaseous atmosphere in close proximity to its nucleus. In this study, the 16O/18O ratio of H2O in the coma of 67P/Churyumov-Gerasimenko, as measured by the ROSINA DFMS mass spectrometer onboard Rosetta, was determined from the ratio of H216O/H218O and 16OH/18OH. The value of 445 ± 35 represents an ~11% enrichment of 18O compared with the terrestrial ratio of 498.7 ± 0.1. This cometary value is consistent with the comet containing primordial water, in accordance with leading self-shielding models. These models predict primordial water to be between 5 and 20% enriched in heavier oxygen isotopes compared to terrestrial water.


Author(s):  
M. G. G. T. Taylor ◽  
N. Altobelli ◽  
B. J. Buratti ◽  
M. Choukroun

The international Rosetta mission was launched in 2004 and consists of the orbiter spacecraft Rosetta and the lander Philae. The aim of the mission is to map the comet 67P/Churyumov–Gerasimenko by remote sensing, and to examine its environment in situ and its evolution in the inner Solar System. Rosetta was the first spacecraft to rendezvous with and orbit a comet, accompanying it as it passes through the inner Solar System, and to deploy a lander, Philae, and perform in situ science on the comet's surface. The primary goals of the mission were to: characterize the comet's nucleus; examine the chemical, mineralogical and isotopic composition of volatiles and refractories; examine the physical properties and interrelation of volatiles and refractories in a cometary nucleus; study the development of cometary activity and the processes in the surface layer of the nucleus and in the coma; detail the origin of comets, the relationship between cometary and interstellar material and the implications for the origin of the Solar System; and characterize asteroids 2867 Steins and 21 Lutetia. This paper presents a summary of mission operations and science, focusing on the Rosetta orbiter component of the mission during its comet phase, from early 2014 up to September 2016. This article is part of the themed issue ‘Cometary science after Rosetta’.


2021 ◽  
Vol 13 (15) ◽  
pp. 3003
Author(s):  
Fabrizio Niro ◽  
Philippe Goryl ◽  
Steffen Dransfeld ◽  
Valentina Boccia ◽  
Ferran Gascon ◽  
...  

Land remote sensing capabilities in the optical domain have dramatically increased in the past decade, owing to the unprecedented growth of space-borne systems providing a wealth of measurements at enhanced spatial, temporal and spectral resolutions. Yet, critical questions remain as how to unlock the potential of such massive amounts of data, which are complementary in principle but inherently diverse in terms of products specifications, algorithm definition and validation approaches. Likewise, there is a recent increase in spatiotemporal coverage of in situ reference data, although inconsistencies in the used measurement practices and in the associated quality information still hinder their integrated use for satellite products validation. In order to address the above-mentioned challenges, the European Space Agency (ESA), in collaboration with other Space Agencies and international partners, is elaborating a strategy for establishing guidelines and common protocols for the calibration and validation (Cal/Val) of optical land imaging sensors. Within this paper, this strategy will be illustrated and put into the context of current validation systems for land remote sensing. A reinforced focus on metrology is the basic principle underlying such a strategy, since metrology provides the terminology, the framework and the best practices, allowing to tie measurements acquired from a variety of sensors to internationally agreed upon standards. From this general concept, a set of requirements are derived on how the measurements should be acquired, analysed and quality reported to users using unified procedures. This includes the need for traceability, a fully characterised uncertainty budget and adherence to community-agreed measurement protocols. These requirements have led to the development of the Fiducial Reference Measurements (FRM) concept, which is promoted by the ESA as the recommended standard within the satellite validation community. The overarching goal is to enhance user confidence in satellite-based data and characterise inter-sensor inconsistencies, starting from at-sensor radiances and paving the way to achieving the interoperability of current and future land-imaging systems.


2009 ◽  
Vol 5 (S263) ◽  
pp. 312-316
Author(s):  
Rita Schulz

AbstractIn March 2004 the European Space Agency launched its Planetary Cornerstone Mission Rosetta to rendezvous with Jupiter-family comet 67P/Churyumov-Gerasimenko. The Rosetta mission represents the next step into the improvement of our understanding of comet nuclei naturally following the four successful comet nucleus fly-by missions carried out in the past. It will however not perform a simple fly-by at its target comet, but combines an Orbiter and a Lander Mission. The Rosetta spacecraft will go in orbit around the comet nucleus when it is still far away from the Sun, and escort the comet for more than a year along its pre- and post-perihelion orbit while monitoring the evolution of the nucleus and the coma as a function of increasing and decreasing solar flux input. Different instrumentations will be used in parallel, from multi-wavelength spectrometry to in-situ measurements of coma and nucleus composition and physical properties. In addition the Rosetta Lander Philae will land on the nucleus surface, before the comet is too active to permit such a landing (i.e. at around r = 3 AU) and examine the surface and subsurface composition as well as its physical properties. Two fly-bys at main belt asteroids have been scheduled for the Rosetta spacecraft during its journey to the comet. The first fly-by at E-type asteroid (2867) Steins was already successfully executed in September 2008. The second and main fly-by at asteroid (21) Lutetia is scheduled for July 2010.


2021 ◽  
Vol 9 (6) ◽  
pp. 575
Author(s):  
Anna Spinosa ◽  
Alex Ziemba ◽  
Alessandra Saponieri ◽  
Leonardo Damiani ◽  
Ghada El Serafy

Remote sensing and satellite imagery have become commonplace in efforts to monitor and model various biological and physical characteristics of the Earth. The land/water interface is a continually evolving landscape of high scientific and societal interest, making the mapping and monitoring thereof particularly important. This paper aims at describing a new automated method of shoreline position detection through the utilization of Synthetic Aperture Radar (SAR) images derived from European Space Agency satellites, specifically the operational SENTINEL Series. The resultant delineated shorelines are validated against those derived from video monitoring systems and in situ monitoring; a mean distance of 1 and a maximum of 3.5 pixels is found.


2021 ◽  
Vol 13 (20) ◽  
pp. 4087
Author(s):  
Maria Teresa Melis ◽  
Luca Pisani ◽  
Jo De Waele

Hundreds of large and deep collapse dolines dot the surface of the Quaternary basaltic plateau of Azrou, in the Middle Atlas of Morocco. In the absence of detailed topographic maps, the morphometric study of such a large number of features requires the use of remote sensing techniques. We present the processing, extraction, and validation of depth measurements of 89 dolines using tri-stereo Pleiades images acquired in 2018–2019 (the European Space Agency (ESA) © CNES 2018, distributed by Airbus DS). Satellite image-derived DEMs were field-verified using traditional mapping techniques, which showed a very good agreement between field and remote sensing measures. The high resolution of these tri-stereo images allowed to automatically generate accurate morphometric datasets not only regarding the planimetric parameters of the dolines (diameters, contours, orientation of long axes), but also for what concerns their depth and altimetric profiles. Our study demonstrates the potential of using these types of images on rugged morphologies and for the measurement of steep depressions, where traditional remote sensing techniques may be hindered by shadow zones and blind portions. Tri-stereo images might also be suitable for the measurement of deep and steep depressions (skylights and collapses) on Martian and Lunar lava flows, suitable targets for future planetary cave exploration.


Author(s):  
David W. Deamer

This book describes a hypothetical process in which populations of protocells can spontaneously assemble and begin to grow and proliferate by energy- dependent polymerization. This might seem to be just an academic question pursued by a few dozen researchers as a matter of curiosity, but in the past three decades advances in engineering have reached a point where both NASA and the European Space Agency (ESA) routinely send spacecraft to other planetary objects in our solar system. A major question being pursued is whether life has emerged elsewhere than on Earth. The limited funds available to support such missions require decisions to be made about target priorities that are guided by judgment calls. These in turn depend on plausible scenarios related to the origin of life on habitable planetary surfaces. We know that other planetary bodies in our solar system have had or do have conditions that would permit microbial life to exist and perhaps even to begin. By a remarkable coincidence, the two most promising objects for extraterrestrial life happen to represent the two alternative scenarios described in this book: An origin of life in conditions of hydrothermal vents or an origin in hydrothermal fields. This final chapter will explore how these alternative views can guide our judgment about where to send future space missions designed as life-detection missions. Questions to be addressed: What is meant by habitability? Which planetary bodies are plausible sites for the origin of life? How do the hypotheses described in this book relate to those sites? There is healthy public interest in how life begins and whether it exists elsewhere in our solar system or on the myriad exoplanets now known to orbit other stars. This has fueled a series of films, television programs, and science fiction novels. Most of these feature extrapolations to intelligent life but a few, such as The Andromeda Strain, explore what might happen if a pathogenic organism from space began to spread to the human population. There is a serious and sustained scientific effort—SETI, or Search for Extraterrestrial Intelligence—devoted to finding an answer to this question.


2019 ◽  
Vol 489 (4) ◽  
pp. 4734-4740 ◽  
Author(s):  
Isaac R H G Schroeder ◽  
Kathrin Altwegg ◽  
Hans Balsiger ◽  
Jean-Jacques Berthelier ◽  
Michael R Combi ◽  
...  

ABSTRACT The nucleus of the Jupiter-family comet 67P/Churyumov–Gerasimenko was discovered to be bi-lobate in shape when the European Space Agency spacecraft Rosetta first approached it in 2014 July. The bi-lobate structure of the cometary nucleus has led to much discussion regarding the possible manner of its formation and on how the composition of each lobe might compare with that of the other. During its two-year-long mission from 2014 to 2016, Rosetta remained in close proximity to 67P/Churyumov–Gerasimenko, studying its coma and nucleus in situ. Based on lobe-specific measurements of HDO and H2O performed with the ROSINA Double Focusing Mass Spectrometer (DFMS) on board Rosetta, the deuterium-to-hydrogen (D/H) ratios in water from the two lobes can be compared. No appreciable difference was observed, suggesting that both lobes formed in the same region and are homogeneous in their D/H ratios.


1995 ◽  
Vol 10 ◽  
pp. 291-293
Author(s):  
Martin C.E. Huber ◽  
Arne Pedersen ◽  
Claus Fröhlich

There is one astrophysical system, where the sites of a star’s mass loss can be localised and observed in detail, and where the behaviour of the resulting stellar wind in the star’s environment and around orbiting obstacles can be investigated in situ: it is the Sun, the heliosphere and the surroundings of planets — among the latter most prominently the terrestrial magnetosphere. Indeed, within a year or so a fleet of satellites equipped with sophisticated remote-sensing and in-situ instruments will make this astronomical paradigm, or more precisely, the solar-terrestrial system accessible to intensive, multi-disciplinary study.Four identical CLUSTER spacecraft, orbiting the Earth within the magnetosphere, the surrounding space and the particularly interesting plasma boundary layers will perform a three-dimensional in-situ study of plasma-heating, particle-acceleration and other small-scale plasma processes (Schmidt and Goldstein,1988). A number of other missions — some of them already in orbit, like GEOTAIL and WIND, some to be launched within one or two years, like INTERBALL and POLAR — will provide information about the Earth’s magnetosphere and the solar wind on larger spatial scales. These missions are described in a Brochure issued jointly by the European Space Agency, NASA, the Japanese Institute of Space and Astronomical Science and the Rssian Space Agency, which can be obtained from A. Pedersen at the above address.


Sign in / Sign up

Export Citation Format

Share Document