Inverse Compton X-Rays from Giant Radio Galaxies

1996 ◽  
Vol 175 ◽  
pp. 256-258
Author(s):  
D. Tsakiris ◽  
J.P. Leahy ◽  
R.G. Strom ◽  
C.R. Barber

The X-ray radiation from inverse Compton scattering of CMB photons by the relativistic electrons in ‘radio’ lobes provides a direct measure of their column density at a known energy, unlike synchrotron radiation which also depends on the unknown magnetic field. Thus by combining inverse Compton and radio data we can separately determine the particle energies and field strengths, rather than having to rely on uncertain estimates like minimum energy. The predicted flux is and strong IC signal requires high radio flux and low magnetic field, properties of giant radio galaxies. On the other hand the minimum detectable count rate, Imin, increases with the target size due to the larger background contribution. As a result the detectability of IC X-rays for ROSAT PSPC B measurements is roughly, assuming a spectral index of 0.75. After making detailed prediction of SIC for a number of objects of the 3CR sample, the best candidates were 3C 236, 3C 326, and 4C 73.08.

2002 ◽  
Vol 199 ◽  
pp. 227-230 ◽  
Author(s):  
G. Setti ◽  
G. Brunetti ◽  
A. Comastri

We review the evidence that detectable fluxes of X-rays are produced by inverse Compton scattering of nuclear photons with the relativistic electrons in the radio lobes of strong FRII radio galaxies within the FRII-RL quasar unification scheme. We report here on the possible detection of this effect in two steep spectrum RL quasars. This may have important implications on the physics and evolution of powerful radio galaxies.


2016 ◽  
Vol 23 (5) ◽  
pp. 1137-1142 ◽  
Author(s):  
Elena Eggl ◽  
Martin Dierolf ◽  
Klaus Achterhold ◽  
Christoph Jud ◽  
Benedikt Günther ◽  
...  

While large-scale synchrotron sources provide a highly brilliant monochromatic X-ray beam, these X-ray sources are expensive in terms of installation and maintenance, and require large amounts of space due to the size of storage rings for GeV electrons. On the other hand, laboratory X-ray tube sources can easily be implemented in laboratories or hospitals with comparatively little cost, but their performance features a lower brilliance and a polychromatic spectrum creates problems with beam hardening artifacts for imaging experiments. Over the last decade, compact synchrotron sources based on inverse Compton scattering have evolved as one of the most promising types of laboratory-scale X-ray sources: they provide a performance and brilliance that lie in between those of large-scale synchrotron sources and X-ray tube sources, with significantly reduced financial and spatial requirements. These sources produce X-rays through the collision of relativistic electrons with infrared laser photons. In this study, an analysis of the performance, such as X-ray flux, source size and spectra, of the first commercially sold compact light source, the Munich Compact Light Source, is presented.


2019 ◽  
Vol 71 (5) ◽  
Author(s):  
Masaki Numazawa ◽  
Yuichiro Ezoe ◽  
Kumi Ishikawa ◽  
Takaya Ohashi ◽  
Yoshizumi Miyoshi ◽  
...  

Abstract We report on results of imaging and spectral studies of X-ray emission from Jupiter observed by Suzaku. In 2006, Suzaku found diffuse X-ray emission in 1–5 keV associated with Jovian inner radiation belts. It has been suggested that the emission is caused by the inverse-Compton scattering by ultra-relativistic electrons (∼50 MeV) in Jupiter’s magnetosphere. To confirm the existence of this emission and to understand its relation to the solar activity, we conducted an additional Suzaku observation in 2014 around the maximum of the 24th solar cycle. As a result, we successfully found the diffuse emission around Jupiter in 1–5 keV again, and also found point-like emission in 0.4–1 keV. The luminosity of the point-like emission, which was probably composed of solar X-ray scattering, charge exchange, or auroral bremsstrahlung emission, increased by a factor of ∼5 with respect to the findings from 2006, most likely due to an increase of the solar activity. The diffuse emission spectrum in the 1–5 keV band was well-fitted with a flat power-law function (Γ = 1.4 ± 0.1) as in the past observation, which supported the inverse-Compton scattering hypothesis. However, its spatial distribution changed from ∼12 × 4 Jovian radius (Rj) to ∼20 × 7 Rj. The luminosity of the diffuse emission increased by the smaller factor of ∼3. This indicates that the diffuse emission is not simply responding to the solar activity, which is also known to cause little effect on the distribution of high-energy electrons around Jupiter. Further sensitive study of the spatial and spectral distributions of the diffuse hard X-ray emission is important to understand how high-energy particles are accelerated in Jupiter’s magnetosphere.


2014 ◽  
Vol 21 (6) ◽  
pp. 1327-1332 ◽  
Author(s):  
Toshiharu Fujii ◽  
Naoto Fukuyama ◽  
Chiharu Tanaka ◽  
Yoshimori Ikeya ◽  
Yoshiro Shinozaki ◽  
...  

The fundamental performance of microangiography has been evaluated using the S-band linac-based inverse-Compton scattering X-ray (iCSX) method to determine how many photons would be required to apply iCSX to human microangiography. ICSX is characterized by its quasi-monochromatic nature and small focus size which are fundamental requirements for microangiography. However, the current iCSX source does not have sufficient flux for microangiography in clinical settings. It was determined whether S-band compact linac-based iCSX can visualize small vessels of excised animal organs, and the amount of X-ray photons required for real time microangiography in clinical settings was estimated. The iCSX coupled with a high-gain avalanche rushing amorphous photoconductor camera could visualize a resolution chart with only a single iCSX pulse of ∼3 ps duration; the resolution was estimated to be ∼500 µm. The iCSX coupled with an X-ray cooled charge-coupled device image sensor camera visualized seventh-order vascular branches (80 µm in diameter) of a rabbit ear by accumulating the images for 5 and 30 min, corresponding to irradiation of 3000 and 18000 iCSX pulses, respectively. The S-band linac-based iCSX visualized microvessels by accumulating the images. An iCSX source with a photon number of 3.6 × 103–5.4 × 104times greater than that used in this study may enable visualizing microvessels of human fingertips even in clinical settings.


2015 ◽  
Vol 48 (2) ◽  
pp. 558-564 ◽  
Author(s):  
Giacomo Resta ◽  
Boris Khaykovich ◽  
David Moncton

A comprehensive description and ray-tracing simulations are presented for symmetric nested Kirkpatrick–Baez (KB) mirrors, commonly used at synchrotrons and in commercial X-ray sources. This paper introduces an analytical procedure for determining the proper orientation between the two surfaces composing the nested KB optics. This procedure has been used to design and simulate collimating optics for a hard-X-ray inverse Compton scattering source. The resulting optical device is composed of two 12 cm-long parabolic surfaces coated with a laterally graded multilayer and is capable of collimating a 12 keV beam with a divergence of 5 mrad (FWHM) by a factor of ∼250. A description of the ray-tracing software that was developed to simulate the graded multilayer mirrors is included.


2020 ◽  
Vol 640 ◽  
pp. A37 ◽  
Author(s):  
A. Ignesti ◽  
G. Brunetti ◽  
M. Gitti ◽  
S. Giacintucci

Context. A large fraction of cool-core clusters are known to host diffuse, steep-spectrum radio sources, called radio mini-halos, in their cores. Mini-halos reveal the presence of relativistic particles on scales of hundreds of kiloparsecs, beyond the scales directly influenced by the central active galactic nucleus (AGN), but the nature of the mechanism that produces such a population of radio-emitting, relativistic electrons is still debated. It is also unclear to what extent the AGN plays a role in the formation of mini-halos by providing the seeds of the relativistic population. Aims. In this work we explore the connection between thermal and non-thermal components of the intra-cluster medium in a sample of radio mini-halos and we study the implications within the framework of a hadronic model for the origin of the emitting electrons. Methods. For the first time, we studied the thermal and non-thermal connection by carrying out a point-to-point comparison of the radio and the X-ray surface brightness in a sample of radio mini-halos. We extended the method generally applied to giant radio halos by considering the effects of a grid randomly generated through a Monte Carlo chain. Then we used the radio and X-ray correlation to constrain the physical parameters of a hadronic model and we compared the model predictions with current observations. Results. Contrary to what is generally reported in the literature for giant radio halos, we find that the mini-halos in our sample have super-linear scaling between radio and X-rays, which suggests a peaked distribution of relativistic electrons and magnetic field. We explore the consequences of our findings on models of mini-halos. We use the four mini-halos in the sample that have a roundish brightness distribution to constrain model parameters in the case of a hadronic origin of the mini-halos. Specifically, we focus on a model where cosmic rays are injected by the central AGN and they generate secondaries in the intra-cluster medium, and we assume that the role of turbulent re-acceleration is negligible. This simple model allows us to constrain the AGN cosmic ray luminosity in the range ∼1044−46 erg s−1 and the central magnetic field in the range 10–40 μG. The resulting γ-ray fluxes calculated assuming these model parameters do not violate the upper limits on γ-ray diffuse emission set by the Fermi-LAT telescope. Further studies are now required to explore the consistency of these large magnetic fields with Faraday rotation studies and to study the interplay between the secondary electrons and the intra-cluster medium turbulence.


1992 ◽  
Vol 128 ◽  
pp. 207-208
Author(s):  
S. V. Bogovalov ◽  
YU. D. Kotov

AbstractSuper-hard γ-ray radiation spectra have been calculated. This radiation is generated near the velocity-of-light cylinder through the process of inverse-Compton scattering of relativistic electrons by thermal photons radiated by a neutron star. These calculations have been compared with observations of the Crab and Vela pulsars at 1000-GeV γ-ray energies. A correlation between γ-ray flares and those in soft (Ex ≃ lkeV) X-rays are predicted.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Stephanie Kulpe ◽  
Martin Dierolf ◽  
Benedikt Günther ◽  
Madleen Busse ◽  
Klaus Achterhold ◽  
...  

Abstract In clinical diagnosis, X-ray computed tomography (CT) is one of the most important imaging techniques. Yet, this method lacks the ability to differentiate similarly absorbing substances like commonly used iodine contrast agent and calcium which is typically seen in calcifications, kidney stones and bones. K-edge subtraction (KES) imaging can help distinguish these materials by subtracting two CT scans recorded at different X-ray energies. So far, this method mostly relies on monochromatic X-rays produced at large synchrotron facilities. Here, we present the first proof-of-principle experiment of a filter-based KES CT method performed at a compact synchrotron X-ray source based on inverse-Compton scattering, the Munich Compact Light Source (MuCLS). It is shown that iodine contrast agent and calcium can be clearly separated to provide CT volumes only showing one of the two materials. These results demonstrate that KES CT at a compact synchrotron source can become an important tool in pre-clinical research.


2019 ◽  
Vol 626 ◽  
pp. A85 ◽  
Author(s):  
Ellis R. Owen ◽  
Kinwah Wu ◽  
Xiangyu Jin ◽  
Pooja Surajbali ◽  
Noriko Kataoka

Quenching of star-formation has been identified in many starburst and post-starburst galaxies, indicating burst-like star-formation histories (SFH) in the primordial Universe. Galaxies undergoing violent episodes of star-formation are expected to be rich in high energy cosmic rays (CRs). We have investigated the role of these CRs in such environments, particularly how they could contribute to this burst-like SFH via quenching and feedback. These high energy particles interact with the baryon and radiation fields of their host via hadronic processes to produce secondary leptons. The secondary particles then also interact with ambient radiation fields to generate X-rays through inverse-Compton scattering. In addition, they can thermalise directly with the semi-ionised medium via Coulomb processes. Heating at a rate of ∼10−25 erg cm−3 s−1can be attained by Coulomb processes in a star-forming galaxy with one core-collapse SN event per decade, and this is sufficient to cause quenching of star-formation. At high-redshift, a substantial amount of CR secondary electron energy can be diverted into inverse-Compton X-ray emission. This yields an X-ray luminosity of above 1041 erg s−1by redshiftz = 7 which drives a further heating effect, operating over larger scales. This would be able to halt inflowing cold gas filaments, strangulating subsequent star-formation. We selected a sample of 16 starburst and post-starburst galaxies at 7 ≲ z ≲ 9 and determine the star-formation rates they could have sustained. We applied a model with CR injection, propagation and heating to calculate energy deposition rates in these 16 sources. Our calculations show that CR feedback cannot be neglected as it has the strength to suppress star-formation in these systems. We also show that their currently observed quiescence is consistent with the suffocation of cold inflows, probably by a combination of X-ray and CR heating.


2020 ◽  
Vol 497 (1) ◽  
pp. 988-1000 ◽  
Author(s):  
D M Worrall ◽  
M Birkinshaw ◽  
H L Marshall ◽  
D A Schwartz ◽  
A Siemiginowska ◽  
...  

ABSTRACT Despite the fact that kpc-scale inverse-Compton (iC) scattering of cosmic microwave background (CMB) photons into the X-ray band is mandated, proof of detection in resolved quasar jets is often insecure. High redshift provides favourable conditions due to the increased energy density of the CMB, and it allows constraints to be placed on the radio synchrotron-emitting electron component at high energies that are otherwise inaccessible. We present new X-ray, optical, and radio results from Chandra, HST, and the VLA for the core and resolved jet in the z = 3.69 quasar PKS J1421−0643. The X-ray jet extends for about 4.5 arcsec (32 kpc projected length). The jet’s radio spectrum is abnormally steep and consistent with electrons being accelerated to a maximum Lorentz factor of about 5000. Results argue in favour of the detection of iC X-rays for modest magnetic field strength of a few nT, Doppler factor of about 4, and viewing angle of about 15°, and predict the jet to be largely invisible in most other spectral bands including the far- and mid-infrared and high-energy gamma-ray. The jet power is estimated to be about 3 × 1046 erg s−1 which is of order a tenth of the quasar bolometric power, for an electron–positron jet. The jet radiative power is only about 0.07 per cent of the jet power, with a smaller radiated power ratio if the jet contains heavy particles, so most of the jet power is available for heating the intergalactic medium.


Sign in / Sign up

Export Citation Format

Share Document