scholarly journals Close-Binary and Pulsating Central Stars

1989 ◽  
Vol 131 ◽  
pp. 251-260
Author(s):  
Howard E. Bond

As a result of photometric-monitoring studies, 7 planetary-nebula nuclei are now known to be binaries with orbital periods less than one day. These systems were probably produced via a common-envelope interaction, during which a wide pair was converted to a close binary surrounded by an ejected red-giant envelope. The frequency of occurrence of such close binaries among PNNs is about 10–15%, showing that binary-star interactions are a significant production mechanism for planetary nebulae. The descendants of close-binary PNNs are probably the cataclysmic variables. Two CVs surrounded by nebulae resembling old planetaries, 0623+71 and GK Per, may provide the most direct evidence for the origin of CVs through PN ejection. The observed birth rate for close-binary PNNs is more than an order of magnitude higher than for CVs, possibly indicating that our census of the CV population is very incomplete. The nucleus of K 1-16 is a member of the GW Vir class of extremely hot pulsating pre-white dwarfs, and the only one known to be surrounded by a PN. These objects offer exciting opportunities for direct measurement of evolutionary timescales and for seismological investigations of the interiors of PNNs and their immediate descendants.

Galaxies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 85 ◽  
Author(s):  
Todd Hillwig

The increase in discovered close binary central stars of planetary nebulae is leading to a sufficiently large sample to begin to make broader conclusions about the effect of close binary stars on common envelope evolution and planetary nebula formation. Herein I review some of the recent results and conclusions specifically relating close binary central stars to nebular shaping, common envelope evolution off the red giant branch, and the total binary fraction and double degenerate fraction of central stars. Finally, I use parameters of known binary central stars to explore the relationship between the proto-planetary nebula and planetary nebula stages, demonstrating that the known proto-planetary nebulae are not the precursors of planetary nebulae with close binary central stars.


2017 ◽  
Vol 14 (S339) ◽  
pp. 330-330
Author(s):  
B. Miszalski ◽  
R. Manick ◽  
J. Mikołajewska ◽  
K. Iłkiewicz ◽  
D. Kamath ◽  
...  

AbstractIn the last decade great strides have been made in understanding the role of binary stars in the evolution and shaping of planetary nebulæ (PNe). Observational efforts have mainly focused on finding close binaries with orbital periods of 1 day or less. Those close binary systems make up around 1 in 5 PNe, and constitute the youngest accessible window into the aftermath of the critical and unobserved common-envelope (CE) phase of binary-star evolution. The poster focused on our recent work with the High Resolution Spectrograph (HRS) on the Southern African Large Telescope (SALT) to search for long-period binaries in PNe. Considerably less is known about such long-period binaries with orbital periods of weeks to years, but they may be fundamental to improving CE population synthesis models and for determining the total binary fraction of PNe. The queue-mode operation of SALT and the excellent sensitivity and stability of HRS (which is enclosed in a vacuum tank) are ideally suited to detecting binaries with low radial-velocity amplitudes over the expected timescales of weeks to years. Many exciting new discoveries about binaries have already been made in this newly-accessible southern horizon in time-domain astronomy thanks to the many unique advantages of SALT.


1992 ◽  
Vol 151 ◽  
pp. 517-521
Author(s):  
Howard E. Bond ◽  
Robin Ciardullo ◽  
Michael G. Meakes

Close-binary planetary-nebula nuclei (PNNs) provide direct evidence for occurrence of a common-envelope phase in binary-star evolution. Their descendants are V471 Tauri-type detached binaries, cataclysmic binaries, and possibly Type I supernovae. Thirteen close-binary PNNs are now known from periodic photometric or radial-velocity variations, or from composite optical/UV spectra. At least 10% of PNNs are close binaries, a fraction more than sufficient to account for the formation of all of the cataclysmic variables in the solar neighborhood. The Abell 35-type binary PNNs, a class with three known members, contain rapidly rotating, chromospherically active late-type primary stars along with extremely hot companions detected with the IUE satellite.


1982 ◽  
Vol 70 ◽  
pp. 231-251
Author(s):  
Mirek J. Plavec

AbstractSymbiotic stars have become an important testing ground of various theories of binary star evolution. Several physically different models can explain them, but in each case certain fairly restrictive conditions must be met, so if we manage to identify a definite object with a model, it will tell us a lot about the structure and evolutionary stage of the stars involved. I envisage at least three models that can give us a symbiotic object: I have called them, respectively, the PN symbiotic, the Algol symbiotic, and the novalike symbiotic. Their properties are briefly discussed. The most promising model is one of a binary system in the second stage of mass transfer, actually at the beginning of it: The cool component is a red giant ascending the asymptotic branch, expanding but not yet filling its critical lobe. The hot star is a subdwarf located in the same region of the Hertzsprung-Russell diagram as the central stars of planetary nebulae. It may be closely related to them, or it may be a helium star, actually a remnant of an Algol primary which underwent the first stage of mass transfer. In these cases, accretion on this star may not play a significant role (PN symbiotic).


Galaxies ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 57
Author(s):  
R.E. Wilson

Development of analytic binary star models is discussed in historical and on-going perspective, beginning with an overview of paradigm shifts, the merits of direct (rectification-free) models, and fundamental four-type binary system morphology. Attention is called to the likelihood that many or even most cataclysmic variables may be of the double contact morphological type. Eclipsing binary distance estimates differ from those of standard candles in being individually measurable—without reliance on (usually nearby) objects that are assumed similar. Recent progress on circumstellar accretion disk models is briefly summarized, with emphasis on the separate roles of fluid dynamic, structural, and analytic models. Time-related parameters (ephemeris, apsidal motion, and light travel time) now can be found with a unified algorithm that processes light curves, velocity curves, and pre-existing eclipse timings together, without need to compute any new timings. Changes in data publication practices are recommended and logical errors and inconsistencies in terminology are noted. Parameter estimation strategies are discussed.


2015 ◽  
Vol 2 (1) ◽  
pp. 183-187 ◽  
Author(s):  
L. Y. Zhu ◽  
S. B. Qian ◽  
E.-G. Zhao ◽  
E. Fernández Lajús ◽  
Z.-T. Han

The sdB-type close binaries are believed to have experienced a common-envelope phase and may evolve into cataclysmic binaries (CVs). About 10% of all known sdB binaries are eclipsing binaries consisting of very hot subdwarf primaries and low-mass companions with short orbital periods. The eclipse profiles of these systems are very narrow and deep, which benefits the determination of high precise eclipsing times and makes the detection of small and close-in tertiary bodies possible. Since 2006 we have monitored some sdB-type eclipsing binaries to search for the close-in substellar companions by analyzing the light travel time effect. Here some progresses of the program are reviewed and the formation of sdB-type binary is discussed.


1989 ◽  
Vol 131 ◽  
pp. 461-461 ◽  
Author(s):  
Howard E. Bond ◽  
Mario Livio ◽  
Michael Meakes

We will present photographic and CCD images of planetary nebulae that are known, on the basis of photometric observations of the central stars, to possess close-binary nuclei. All of the orbital periods range from 2.7 to 16 hours, except for the 16-day binary nucleus of NGC 2346.


2004 ◽  
Vol 191 ◽  
pp. 239-246
Author(s):  
C. Maceroni

AbstractThis paper presents some results of the analysis of the eclipsing binaries samples that came out as by-products of the OGLE microlensing surveys. These experiments monitored millions of stars in the direction of the galactic bulge (OGLE-I), and of the Small Magellanic Cloud (OGLE-II). Their completeness allowed the discovery of rare and interesting systems. An example is a new group of long period binaries in the SMC with presumably a giant component in contact with the critical lobe, which dominates the systemic light variation (“β -contacts”). These systems obey a period-luminosity-color relation and could be used as an auxiliary, but independent, tool for distance determination. Another very interesting object, for its implications in the studies of angular momentum loss processes by magnetic braking and of stellar activity, is the system of shortest known period with M dwarf components, discovered by OGLE-I, BW3 V38, that is the target of a spectroscopic follow-up. The perspectives for close binary star research in view of future space missions, such as COROT and Eddington are briefly discussed.


2006 ◽  
Vol 2 (S240) ◽  
pp. 587-592
Author(s):  
Zs. Kővári ◽  
J. Bartus ◽  
K. Oláh ◽  
K.G. Strassmeier ◽  
J.B. Rice ◽  
...  

AbstractTests are carried out on retrieving Doppler maps from distorted stars in close binaries to estimate how Doppler imaging may be aliased by ellipticity. Maps obtained for the distorted shape are compared with the results of the simple spherical approximation, using real data of the RS CVn-type close binary star ζ Andromedae.


Author(s):  
Zhao Guo

The study of stellar oscillations allows us to infer the properties of stellar interiors. Meanwhile, fundamental parameters such as mass and radius can be obtained by studying stars in binary systems. The synergy between binarity and asteroseismology can constrain the parameter space of stellar properties and facilitate the asteroseismic inference. On the other hand, binarity also introduces additional complexities such tides and mass transfer. From an observational perspective, we briefly review the recent advances in the study of tidal effects on stellar oscillations, focusing on upper main sequence stars (F-, A-, or OB- type). The effect can be roughly divided into two categories. The first one concerns the tidally excited oscillations (TEOs) in eccentric binaries where TEOs are mostly due to resonances between dynamical tides and gravity modes of the star. TEOs appear as orbital-harmonic oscillations on top of the eccentric ellipsoidal light curve variations (the “heartbeat” feature). The second category is regarding the self-excited oscillations perturbed by static tides in circularized and synchronized close binaries. It includes the tidal deformation of the propagation cavity and its effect on eigenfrequencies, eigenfunctions, and the pulsation alignment. We list binary systems that show these two types of tidal effect and summarize the orbital and pulsation observables. We also discuss the theoretical approaches used to model these tidal oscillations and relevant complications such as non-linear mode coupling and resonance locking. Further information can be extracted from the observations of these oscillations which will improve our understanding of tides. We also discuss the effect of mass transfer, the extreme result of tides, on stellar oscillations. We bring to the readers' attention: (1) oscillating stars undergoing mass accretion (A-, F-, and OB type pulsators and white dwarfs), for which the pulsation properties may be changed significantly by accretion; (2) post-mass transfer pulsators, which have undergone a stable or unstable Roche-Lobe overflow. These pulsators have great potential in probing detailed physical processes in stellar interiors and mass transfer, as well as in studying the binary star populations.


Sign in / Sign up

Export Citation Format

Share Document