scholarly journals Panspermia - A Modern Astrophysical and Biological Approach

1985 ◽  
Vol 112 ◽  
pp. 157-164
Author(s):  
J. Mayo Greenberg ◽  
Peter Weber

For the first time a laboratory simulation of the effect of the interstellar environment has been used to provide quantitative estimates of bacterial spore survival in the space between the stars. In the diffuse regions between clouds ten percent survival is limited to at most hundreds of years although one in ten thousand may survive for several thousand years. Within common dense clouds the ten percent life expectancy is extended to tens of millions of years because of the severely reduced ultraviolet within these clouds as well as because of the accretion of ultraviolet absorbing mantles on the spores. The random motion of molecular clouds is shown to provide a possible vehicle for transport of spores from one solar system to another. The most hazardous times in such a journey are at the start and finish and, although the requirements for survival during these periods are quantified here, the possibility or probability of their being satisfied remains pure conjecture.

Author(s):  
Vladimir A. Lapin ◽  
Erken S. Aldakhov ◽  
S. D. Aldakhov ◽  
A. B. Ali

For the first time in Almaty full passport of apartment stock of multiapartment building was carried out. The structure of the housing stock was revealed with the allocation of groups of buildings according to structural solutions and assessment of their seismic resistance. Based on the results of certification, quantitative estimates of failure probability values for different types of buildings were obtained. Formulas for estimation of quantitative value of seismic risk are obtained. The number of deaths in the estimated zem-shakes was estimated. The results of the assessments will be used for practical recommendations to reduce risk and expected losses in possible earthquakes.


1991 ◽  
Vol 148 ◽  
pp. 415-420 ◽  
Author(s):  
R. S. Booth ◽  
Th. De Graauw

In this short review we describe recent new observations of millimetre transitions of molecules in selected regions of the Magellanic Clouds. The observations were made using the Swedish-ESO Submillimetre Telescope, SEST, (Booth et al. 1989), the relatively high resolution of which facilitates, for the first time, observations of individual giant molecular clouds in the Magellanic Clouds. We have mapped the distribution of the emission from the two lowest rotational transitions of 12CO and 13CO and hence have derived excitation conditions for the molecule. In addition, we have observed several well-known interstellar molecules in the same regions, thus doubling the number of known molecules in the Large Magellanic Cloud (LMC). The fact that all the observations have been made under controlled conditions with the same telescope enables a reasonable intercomparison of the molecular column densities. In particular, we are able to observe the relative abundances among the different isotopically substituted species of CO.


2010 ◽  
Vol 9 (4) ◽  
pp. 273-291 ◽  
Author(s):  
J. Horner ◽  
B.W. Jones

AbstractWithin the next few years, the first Earth-mass planets will be discovered around other stars. Some of those worlds will certainly lie within the classical ‘habitable zone’ of their parent stars, and we will quickly move from knowing of no exoEarths to knowing many. For the first time, we will be in a position to carry out a detailed search for the first evidence of life beyond our Solar System. However, such observations will be hugely taxing and time consuming to perform, and it is almost certain that far more potentially habitable worlds will be known than it is possible to study. It is therefore important to catalogue and consider the various effects that make a promising planet more or less suitable for the development of life. In this work, we review the various planetary, dynamical and stellar influences that could influence the habitability of exoEarths. The various influences must be taken in concert when we attempt to decide where to focus our first detailed search for life. While there is no guarantee that any given planet will be inhabited, it is vitally important to ensure that we focus our time and effort on those planets most likely to yield a positive result.


2020 ◽  
Vol 633 ◽  
pp. A163 ◽  
Author(s):  
Claudia Cicone ◽  
Roberto Maiolino ◽  
Susanne Aalto ◽  
Sebastien Muller ◽  
Chiara Feruglio

We present interferometric observations of the CN(1–0) line emission in Mrk 231 and combine them with previous observations of CO and other H2 gas tracers to study the physical properties of the massive molecular outflow. We find a strong boost of the CN/CO(1–0) line luminosity ratio in the outflow of Mrk 231, which is unprecedented compared to any other known Galactic or extragalactic astronomical source. For the dense gas phase in the outflow traced by the HCN and CN emissions, we infer XCN ≡ [CN]/[H2]> XHCN by at least a factor of three, with H2 gas densities of nH2 ∼ 105−6 cm−3. In addition, we resolve for the first time narrow spectral features in the HCN(1–0) and HCO+(1–0) high-velocity line wings tracing the dense phase of the outflow. The velocity dispersions of these spectral features, σv ∼ 7−20 km s−1, are consistent with those of massive extragalactic giant molecular clouds detected in nearby starburst nuclei. The H2 gas masses inferred from the HCN data are quite high, Mmol ∼ 0.3−5 × 108 M⊙. Our results suggest that massive complexes of denser molecular gas survive embedded into the more diffuse H2 phase of the outflow, and that the chemistry of these outflowing dense clouds is strongly affected by UV radiation.


1996 ◽  
Vol 309 ◽  
pp. 321-344 ◽  
Author(s):  
P. J. Thomas ◽  
P. F. Linden

A laboratory study which simulates the dynamics of shallow sea fronts and the mixing across a tidal front is described. The experiments show, for the first time, that it is possible to simulate a stationary tidal front with the inclusion of buoyancy effects, Coriolis effects and turbulence in the laboratory. Experimental data obtained for the cross-front mixing rate are presented. The data analysis shows that the mixing rate increases with stratification and decreases with rotation. A theoretical model of the flow which collapses the experimental data is developed which shows that the cross-front mixing is controlled by baroclinic processes. The model enables an extrapolation of the laboratory results to oceanographic conditions. Estimates of the cross-front mixing velocity for oceanographic conditions give values consistent with estimates obtained from North Sea data.


2020 ◽  
Vol 30 (3) ◽  
pp. 5-5
Author(s):  
Polly Moffat

A report to mark 10 years since the landmark study, Fair Society, Healthy Lives, has revealed that for the first time in over a century life expectancy in England has flat-lined


1987 ◽  
Vol 120 ◽  
pp. 443-445
Author(s):  
Valerio Pirronello

It is described a method for evaluating the low energy cosmic ray flux outside the heliosphere. It is based on the chemical modifications induced in cometary nuclei by impinging ions and on the release of synthesized chemical species by comets entering for the first time into the inner solar system.


2020 ◽  
Vol 497 (3) ◽  
pp. 2811-2830 ◽  
Author(s):  
Quentin Kral ◽  
Luca Matrà ◽  
Grant M Kennedy ◽  
Sebastian Marino ◽  
Mark C Wyatt

ABSTRACT Gas detection around main-sequence stars is becoming more common with around 20 systems showing the presence of CO. However, more detections are needed, especially around later spectral type stars to better understand the origin of this gas and refine our models. To do so, we carried out a survey of 10 stars with predicted high likelihoods of secondary CO detection using ALMA in band 6. We looked for continuum emission of mm-dust as well as gas emission (CO and CN transitions). The continuum emission was detected in 9/10 systems for which we derived the discs’ dust masses and geometrical properties, providing the first mm-wave detection of the disc around HD 106906, the first mm-wave radius for HD 114082, 117214, HD 15745, HD 191089, and the first radius at all for HD 121191. A crucial finding of our paper is that we detect CO for the first time around the young 10–16 Myr old G1V star HD 129590, similar to our early Sun. The gas seems colocated with its planetesimal belt and its total mass is likely in the range of (2–10) × 10−5 M⊕. This first gas detection around a G-type main-sequence star raises questions as to whether gas may have been released in the Solar system as well in its youth, which could potentially have affected planet formation. We also detected CO gas around HD 121191 at a higher signal-to-noise ratio than previously and find that the CO lies much closer-in than the planetesimals in the system, which could be evidence for the previously suspected CO viscous spreading owing to shielding preventing its photodissociation. Finally, we make estimates for the CO content in planetesimals and the HCN/CO outgassing rate (from CN upper limits), which we find are below the level seen in Solar system comets in some systems.


Sign in / Sign up

Export Citation Format

Share Document