scholarly journals What do binaries teach us about mass-loss from late-type stars?

1987 ◽  
Vol 122 ◽  
pp. 307-318
Author(s):  
Dieter Reimers

It is shown that the binary technique - a B star companion is used as a light source which probes the wind of the red giant primary - has yielded accurate mass-loss rates and wind velocities for 8 G to M (super) giants and (in some cases) estimates of wind temperature.Eclipsing binary systems have in addition revealed that G and K supergiants possess extended chromospheres which could be detected outwards to ∼ 1 R* stellar radius) above the photospheres. Electron temperatures Te and hydrogen ionization ne/nH seem to increase with height up to at least 0.5 R* (ne/nH= 10−2, Te = 104 K at 0.5 R*), and the winds start to be accelerated at heights above ∼ 0.5 R*.Mass-loss rates appear to increase steeper than linearly with L/g · R. It is shown that the observed mass-loss rates are consistent with stellar evolution constraints for both Pop. II and Pop I stars.

2020 ◽  
Vol 499 (2) ◽  
pp. 1531-1560
Author(s):  
Christer Sandin ◽  
Lars Mattsson

ABSTRACT Stellar winds of cool carbon stars enrich the interstellar medium with significant amounts of carbon and dust. We present a study of the influence of two-fluid flow on winds where we add descriptions of frequency-dependent radiative transfer (RT). Our radiation hydrodynamic models in addition include stellar pulsations, grain growth and ablation, gas-to-dust drift using one mean grain size, dust extinction based on both the small particle limit (SPL) and Mie scattering, and an accurate numerical scheme. We calculate models at high spatial resolution using 1024 gridpoints and solar metallicities at 319 frequencies, and we discern effects of drift by comparing drift models to non-drift models. Our results show differences of up to 1000 per cent in comparison to extant results. Mass-loss rates and wind velocities of drift models are typically, but not always, lower than in non-drift models. Differences are larger when Mie scattering is used instead of the SPL. Amongst other properties, the mass-loss rates of the gas and dust, dust-to-gas density ratio, and wind velocity show an exponential dependence on the dust-to-gas speed ratio. Yields of dust in the least massive winds increase by a factor 4 when drift is used. We find drift velocities in the range $10\!-\!67\, \mbox{km}\, \mbox{s}^{-1}$, which is drastically higher than in our earlier works that use grey RT. It is necessary to include an estimate of drift velocities to reproduce high yields of dust and low wind velocities.


Author(s):  
Jie Yu ◽  
Saskia Hekker ◽  
Timothy R Bedding ◽  
Dennis Stello ◽  
Daniel Huber ◽  
...  

Abstract Mass loss by red giants is an important process to understand the final stages of stellar evolution and the chemical enrichment of the interstellar medium. Mass-loss rates are thought to be controlled by pulsation-enhanced dust-driven outflows. Here we investigate the relationships between mass loss, pulsations, and radiation, using 3213 luminous Kepler red giants and 135000 ASAS–SN semiregulars and Miras. Mass-loss rates are traced by infrared colours using 2MASS and WISE and by observed-to-model WISE fluxes, and are also estimated using dust mass-loss rates from literature assuming a typical gas-to-dust mass ratio of 400. To specify the pulsations, we extract the period and height of the highest peak in the power spectrum of oscillation. Absolute magnitudes are obtained from the 2MASS Ks band and the Gaia DR2 parallaxes. Our results follow. (i) Substantial mass loss sets in at pulsation periods above ∼60 and ∼100 days, corresponding to Asymptotic-Giant-Branch stars at the base of the period-luminosity sequences C′ and C. (ii) The mass-loss rate starts to rapidly increase in semiregulars for which the luminosity is just above the red-giant-branch tip and gradually plateaus to a level similar to that of Miras. (iii) The mass-loss rates in Miras do not depend on luminosity, consistent with pulsation-enhanced dust-driven winds. (iv) The accumulated mass loss on the Red Giant Branch consistent with asteroseismic predictions reduces the masses of red-clump stars by 6.3%, less than the typical uncertainty on their asteroseismic masses. Thus mass loss is currently not a limitation of stellar age estimates for galactic archaeology studies.


2019 ◽  
Vol 55 (2) ◽  
pp. 161-175
Author(s):  
L. Hernández-Cervantes ◽  
B. Pérez-Rendón ◽  
A. Santillán ◽  
G. García-Segura ◽  
C. Rodríguez-Ibarra

In this work, we present models of massive stars between 15 and 23 M⊙ , with enhanced mass loss rates during the red supergiant phase. Our aim is to explore the impact of extreme red supergiant mass-loss on stellar evolution and on their circumstellar medium. We computed a set of numerical experiments, on the evolution of single stars with initial masses of 15, 18, 20 and, 23 M⊙ , and solar composition (Z = 0.014), using the numerical stellar code BEC. From these evolutionary models, we obtained time-dependent stellar wind parameters, that were used explicitly as inner boundary conditions in the hydrodynamical code ZEUS-3D, which simulates the gas dynamics in the circumstellar medium (CSM), thus coupling the stellar evolution to the dynamics of the CSM. We found that stars with extreme mass loss in the RSG phase behave as a larger mass stars.


1999 ◽  
Vol 191 ◽  
pp. 389-394
Author(s):  
K.-P. Schröder ◽  
J.M. Winters ◽  
E. Sedlmayr

We have computed mass-loss histories and tip-AGB stellar evolution models in the presence of a dust-induced, carbon-rich “superwind”, in the initial mass-range of 1.1 to about 2.5 solar masses and for nearly solar composition (X=0.28, Y=0.70, Z=0.02). Consistent, actual mass-loss rates are used in each time-step, based on pulsating and “dust-driven” stellar wind models for carbon-rich stars (Fleischer et al. 1992) which include a detailed treatment of dust-formation, radiative transfer and wind acceleration. Our tip-AGB mass-loss rates reach about 4 · 10−5M⊙yr−1 and become an influencial factor of stellar evolution.Heavy outflows of 0.3 to 0.6 M⊙ within only 2 to 3·104 yrs, exactly as required for PN-formation, occur with tip-AGB models of an initial stellar mass Mi ≳ 1.3M⊙. The mass-loss of our “superwind” varies strongly with effective temperature (Ṁ ∝ T−8eff, see Arndt et al. 1997), reflecting the temperature-sensitive micro-physics and chemistry of dust-formation and radiative transfer on a macroscopic scale. Furthermore, a thermal pulse leads to a very short (100 to 200 yrs) interruption of the “superwind” of these models.For Mi ≲ 1.1M⊙, our evolution models fail to reach the (Eddington-like) critical luminosity Lc required by the radiatively driven wind models, while for the (initial) mass-range in-between, with the tip-AGB luminosity LtAGB near Lc, thermal pulses drive bursts of “superwind”, which could explain the outer shells found with some PN's. In particular, a burst with a duration of only 800 yrs and a mass-loss of about 0.03 M⊙, occurs right after the last AGB thermal pulse of a model with Mi ≈ 1.1M⊙. There is excellent agreement with the thin CO shells found by Olofsson et al. (e.g., 1990, 1998) around some Mira stars.


1982 ◽  
Vol 98 ◽  
pp. 377-385 ◽  
Author(s):  
Theodore P. Snow

Resonance-line profiles of SiIII and SiIV lines in 22 B and Be stars have been analyzed in the derivation of mass-loss rates. Of the 19 known Be or shell stars in the sample group, all but one show evidence of winds. It is argued that for stars of spectral type B1.5 and later, SiIII and SiIV are the dominant stages of ionization, and this conclusion, together with theoretical fits to the line profiles, leads to mass-loss rates between 10-11 and 3 × 10-9 for the stars. The rate of mass loss does not correlate simply with stellar parameters, and probably is variable with time. The narrow FeIII shell lines often seen in the ultraviolet spectra of Be stars may arise at low levels in the wind, below the strong acceleration zone. The mass-loss rates from Be stars are apparently insufficient to affect stellar evolution.


2018 ◽  
Vol 609 ◽  
pp. A94 ◽  
Author(s):  
R. Hainich ◽  
L. M. Oskinova ◽  
T. Shenar ◽  
P. Marchant ◽  
J. J. Eldridge ◽  
...  

Context. The first directly detected gravitational waves (GW 150914) were emitted by two coalescing black holes (BHs) with masses of ≈ 36 M⊙ and ≈ 29 M⊙. Several scenarios have been proposed to put this detection into an astrophysical context. The evolution of an isolated massive binary system is among commonly considered models. Aims. Various groups have performed detailed binary-evolution calculations that lead to BH merger events. However, the question remains open as to whether binary systems with the predicted properties really exist. The aim of this paper is to help observers to close this gap by providing spectral characteristics of massive binary BH progenitors during a phase where at least one of the companions is still non-degenerate. Methods. Stellar evolution models predict fundamental stellar parameters. Using these as input for our stellar atmosphere code (Potsdam Wolf-Rayet), we compute a set of models for selected evolutionary stages of massive merging BH progenitors at different metallicities. Results. The synthetic spectra obtained from our atmosphere calculations reveal that progenitors of massive BH merger events start their lives as O2-3V stars that evolve to early-type blue supergiants before they undergo core-collapse during the Wolf-Rayet phase. When the primary has collapsed, the remaining system will appear as a wind-fed high-mass X-ray binary. Based on our atmosphere models, we provide feedback parameters, broad band magnitudes, and spectral templates that should help to identify such binaries in the future. Conclusions. While the predicted parameter space for massive BH binary progenitors is partly realized in nature, none of the known massive binaries match our synthetic spectra of massive BH binary progenitors exactly. Comparisons of empirically determined mass-loss rates with those assumed by evolution calculations reveal significant differences. The consideration of the empirical mass-loss rates in evolution calculations will possibly entail a shift of the maximum in the predicted binary-BH merger rate to higher metallicities, that is, more candidates should be expected in our cosmic neighborhood than previously assumed.


2020 ◽  
Vol 496 (2) ◽  
pp. 1325-1342 ◽  
Author(s):  
Ioana Boian ◽  
Jose H Groh

ABSTRACT We compute an extensive set of early-time spectra of supernovae interacting with circumstellar material using the radiative transfer code cmfgen. Our models are applicable to events observed from 1 to a few days after explosion. Using these models, we constrain the progenitor and explosion properties of a sample of 17 observed interacting supernovae at early times. Because massive stars have strong mass-loss, these spectra provide valuable information about supernova progenitors, such as mass-loss rates, wind velocities, and surface abundances. We show that these events span a wide range of explosion and progenitor properties, exhibiting supernova luminosities in the 108 to 1012 L⊙ range, temperatures from 10 000 to 60 000 K, progenitor mass-loss rates from a few 10−4 up to 1 M⊙ yr−1, wind velocities from 100 to 800 km s−1, and surface abundances from solar-like to H-depleted. Our results suggest that many progenitors of supernovae interacting with circumstellar material have significantly increased mass-loss before explosion compared to what massive stars show during the rest of their lifetimes. We also infer a lack of correlation between surface abundances and mass-loss rates. This may point to the pre-explosion mass-loss mechanism being independent of stellar mass. We find that the majority of these events have CNO-processed surface abundances. In the single star scenario this points to a preference towards high-mass RSGs as progenitors of interacting SNe, while binary evolution could impact this conclusion. Our models are publicly available and readily applicable to analyse results from ongoing and future large-scale surveys such as the Zwicky Transient Factory.


1994 ◽  
Vol 146 ◽  
pp. 113-133
Author(s):  
Hans Olofsson

Red giant stars on the asymptotic giant branch (AGB), AGB-stars, lose copious amounts of matter in a slow stellar wind (Olofsson 1993). Mass loss rates in excess of 10-4M⊙yr-1have been measured. The primary observational consequence of this mass loss is the formation of an expanding envelope of gas and dust, a circumstellar envelope (CSE), that surrounds the star. This is a truly extended atmosphere that continues thousands of stellar radii away from the star. At the highest mass loss rates (which probably occur at the end of the AGB evolution) the CSE becomes so opaque that the photosphere is hidden and essentially all information about the object stems from the circumstellar emission. At some point on the AGB a star may change from being O-rich (i.e., the abundance of O is higher than that of C) to becoming C-rich (i.e., a carbon star where the abundance of C is higher than that of O) as a result of nuclear-processed material being dredged up to the surface. The chemical composition of the CSE will follow that of the central star, although with some time delay so that there may be some rare cases of O-rich CSEs around carbon stars. The mass loss decreases and changes its nature as the star leaves the AGB and starts its post-AGB evolution. Eventually the star becomes hot enough to ionize the inner part of the AGB-CSE and a planetary nebula (PN) is formed. The ultimate fate of the star is a long life as a slowly cooling white dwarf. The CSE will gradually disperse and its metal-enriched matter will mix with the interstellar medium, and thereby it contributes to the chemical evolution of a galaxy. The intense mass loss makes it possible for stars as massive as 8 M⊙, i.e., the bulk of all stars in a galaxy, to follow this evolutionary sequence. Similar CSEs are also found around supergiants.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 454-454 ◽  
Author(s):  
Cyril Georgy ◽  
Sylvia Ekström

AbstractThe red supergiant phase is an important phase of the evolution of massive star, as it mostly determines its final stages. One of the most important driver of the evolution during this phase is mass loss. However, the mass-loss rates prescription used for red supergiants in current stellar evolution models are still very inaccurate.Varying the mass-loss rate makes the star evolve for some time in yellow/blue regions of the HRD, modifying the number of RSGs in some luminosity ranges. Figure 1 shows how the luminosity distribution of RSGs is modified for various mass-loss prescriptions. This illustrates that it is theoretically possible to determine at least roughly what is the typical mass loss regime of RSGs in a stellar evolution perspective.


1989 ◽  
Vol 106 ◽  
pp. 369-369
Author(s):  
A. Heske

Circumstellar envelopes of cool giants and supergiants contain atomic and molecular gas, and dust. The charateristic spectral features of these different components can be observed at optical (atoms), at radio (molecules) and at infrared wavelengths (dust). Since the detection of circumstellar matter around giants and supergiants most studies concentrated on detemining mass loss rates from observations of a single component assuming steady mass loss during late stellar evolution. Nevertheless, the IRAS colour colour diagramme and evolutionary models rather point to a non steady evolution during the mass loss phase of the star.


Sign in / Sign up

Export Citation Format

Share Document