scholarly journals Can quantum theory explain dark matter?

2004 ◽  
Vol 220 ◽  
pp. 497-498
Author(s):  
A. D. Ernest

Certain solutions to a gravitational form of Schrödinger's equation can yield stable, macroscopic eigenstate solutions having no classical analogue, with properties resembling those of dark matter. Some more tractable solutions show: (1) radiative lifetimes far exceeding the universe's age, implying negligible emission and inherent stability w.r.t. gravitational collapse, (2) negligible interaction with EMR and visible matter, (3) potential to give rise to flat rotation curves and (4) eigenstate energies and “sizes” consistent with that expected for the galactic halo. Traditional baryonic particles occupying such eigenstates will be invisible and weakly interacting, and may be assimilated into galactic evolution scenarios without significantly disturbing BBN ratios. It is proposed that such structures may explain the nature and origin of dark matter.

2012 ◽  
Vol 21 (11) ◽  
pp. 1242002 ◽  
Author(s):  
PRITI MISHRA ◽  
TEJINDER P. SINGH

Flat galaxy rotation curves and the accelerating Universe both imply the existence of a critical acceleration, which is of the same order of magnitude in both the cases, in spite of the galactic and cosmic length scales being vastly different. Yet, it is customary to explain galactic acceleration by invoking gravitationally bound dark matter, and cosmic acceleration by invoking a "repulsive" dark energy. Instead, might it not be the case that the flatness of rotation curves and the acceleration of the Universe have a common cause? In this essay we propose a modified theory of gravity. By applying the theory on galactic scales we demonstrate flat rotation curves without dark matter, and by applying it on cosmological scales we demonstrate cosmic acceleration without dark energy.


Author(s):  
Ram Gopal Vishwakarma

The dark matter problem is one of the most pressing problems in modern physics. As there is no well-established claim from a direct detection experiment supporting the existence of the illusive dark matter that has been postulated to explain the flat rotation curves of galaxies, and since the whole issue of an alternative theory of gravity remains controversial, it may be worth to reconsider the familiar ground of general relativity (GR) itself for a possible way out. It has recently been discovered that a skew-symmetric rank-three tensor field — the Lanczos tensor field — that generates the Weyl tensor differentially, provides a proper relativistic analogue of the Newtonian gravitational force. By taking account of its conformal invariance, the Lanczos tensor leads to a modified acceleration law which can explain, within the framework of GR itself, the flat rotation curves of galaxies without the need for any dark matter whatsoever.


2019 ◽  
Vol 34 (23) ◽  
pp. 1950188
Author(s):  
Nayan Sarkar ◽  
Susmita Sarkar ◽  
Farook Rahaman ◽  
P. K. F. Kuhfittig ◽  
G. S. Khadekar

It is well-known that traversable wormholes are valid solutions of the Einstein field equations, but these structures can only be maintained by violating the null energy condition. In this paper, we have obtained such wormhole solutions in an isothermal galactic halo, as well as in a void. We have shown that the null energy condition is violated, with the help of a suitable redshift function obtained from flat galactic rotation curves.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Frederic Bournaud

Tidal dwarf galaxies form during the interaction, collision, or merger of massive spiral galaxies. They can resemble “normal” dwarf galaxies in terms of mass, size, and become dwarf satellites orbiting around their massive progenitor. They nevertheless keep some signatures from their origin, making them interesting targets for cosmological studies. In particular, they should be free from dark matter from a spheroidal halo. Flat rotation curves and high dynamical masses may then indicate the presence of an unseen component, and constrain the properties of the “missing baryons,” known to exist but not directly observed. The number of dwarf galaxies in the Universe is another cosmological problem for which it is important to ascertain if tidal dwarf galaxies formed frequently at high redshift, when the merger rate was high, and many of them survived until today. In this paper, “dark matter” is used to refer to the nonbaryonic matter, mostly located in large dark halos, that is, CDM in the standard paradigm, and “missing baryons” or “dark baryons” is used to refer to the baryons known to exist but hardly observed at redshift zero, and are a baryonic dark component that is additional to “dark matter”.


1999 ◽  
Vol 183 ◽  
pp. 157-157 ◽  
Author(s):  
M. Honma ◽  
Y. Sofue

We have investigated the masses and extents of dark halos of spiral galaxies by two methods. First, we have reanalyzed HI outer rotation curves so far obtained considering the velocity uncertainties. We confirmed that many HI rotation curves indicate the existence of dark matter to some extent. However, we also found that only few rotation curves provide direct evidences for halos extended beyond 10 disk scale length. On the other hand, recent HI observations revealed that several galaxies have declining rotation curves that are approximated by Keplerian in the outermost regions. Considering the velocity uncertainties in the outer rotation curves, we found that these declining rotation curves are not rare compared to flat rotation curves. If these declining rotation curves indeed trace the mass truncation, these results indicate that some dark halos have moderate masses that are comparable or slightly larger than disk masses.


Mass models of spiral galaxies based on the observed light distribution, assuming constant M /L for bulge and disc, are able to reproduce the observed rotation curves in the inner regions, but fail to do so increasingly towards and beyond the edge of the visible material. The discrepancy in the outer region can be accounted for by invoking dark matter; some galaxies require at least four times as much dark matter as luminous matter. There is no evidence for a dependence on galaxy luminosity or morphological type. Various arguments support the idea that a distribution of visible matter with constant M /L is responsible for the circular velocity in the inner region, i.e. inside approximately 2.5 disc scalelengths. Luminous matter and dark matter seem to ‘conspire’ to produce the flat observed rotation curves in the outer region. It seems unlikely that this coupling between disc and halo results from the large-scale gravitational interaction between the two components. Attempts to determine the shape of dark halos have not yet produced convincing results.


2010 ◽  
Vol 2010 ◽  
pp. 1-29 ◽  
Author(s):  
Daniele Bertacca ◽  
Nicola Bartolo ◽  
Sabino Matarrese

We analyze and review cosmological models in which the dynamics of a single scalar field accounts for a unified description of the Dark Matter and Dark Energy sectors, dubbed Unified Dark Matter (UDM) models. In this framework, we consider the general Lagrangian of -essence, which allows to find solutions around which the scalar field describes the desired mixture of Dark Matter and Dark Energy. We also discuss static and spherically symmetric solutions of Einstein's equations for a scalar field with noncanonical kinetic term, in connection with galactic halo rotation curves.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012043
Author(s):  
Berkan Amina ◽  
Boussahel Mounir

Abstract It is for the most part expected that dark matter is important to clarify the rotation of the galaxy, It has effectively been seen that the non-commutative geometry background can achieve this objective similarly. The objective of this study is to investigate a relationship between non-commutative geometry and certain aspect of dark matter. We are relying on a basic mathematical expression argument that indicates that the appearance of dark matter in galaxies and galaxy clusters with regard to flat rotation curves is similarly a result of non commutative geometry.


Sign in / Sign up

Export Citation Format

Share Document