scholarly journals VLA Polarization Observation of the Radio Arc at 15 Ghz

1989 ◽  
Vol 136 ◽  
pp. 269-274 ◽  
Author(s):  
M. Inoue ◽  
E. Fomalont ◽  
M. Tsuboi ◽  
F. Yusef-Zadeh ◽  
M. Morris ◽  
...  

Polarization measurements of the radio Arc were made with the VLA at 15 GHz. High frequency polarimetry made with high spatial resolution minimizes Faraday depolarization and reveals polarized filaments which correspond to the predominant filaments of the radio Arc. We notice a peculiar linear feature in the polarization map (“thorns”) which suggests the presence of a second magnetic field system. The total intensity maps show no evidence for an interaction between the two field systems, so the thorns may be foreground magnetized structures. However, if the two magnetic field systems do interact, it would allow a model in which the acceleration of relativistic particles takes place at their intersection. The accelerated particles would flow toward both ends of the radio Arc, and account for the intrinsic polarization observed along the entire length of the system. Thermal electrons responsible for the Faraday depolarization occuring at longer wavelengths may be supplied by the interaction of the streams of relativistic particles with relatively dense, ambient thermal clouds.

2017 ◽  
Vol 25 (101) ◽  
pp. 402-408
Author(s):  
Boris B., Kobyljanskij ◽  
◽  
Valery V., Kolomiec ◽  
Boris I., Kuznetsov ◽  
Tatyana B., Nikitina ◽  
...  

Author(s):  
V.A. Bulanov ◽  
I.V. Korskov ◽  
A.V. Storozhenko ◽  
S.N. Sosedko

Описано применение акустического зондирования для исследования акустических характеристик верхнего слоя моря с использованием широкополосных остронаправленных инвертированных излучателей,устанавливаемых на дно. В основу метода положен принцип регистрации обратного рассеяния и отраженияот поверхности моря акустических импульсов с различной частотой, позволяющий одновременно измерятьрассеяние и поглощение звука и нелинейный акустический параметр морской воды. Многочастотное зондирование позволяет реализовать акустическую спектроскопию пузырьков в приповерхностных слоях моря,проводить оценку газосодержания и получать данные о спектре поверхностного волнения при различных состояниях моря вплоть до штормовых. Применение остронаправленных высокочастотных пучков ультразвукапозволяет разделить информацию о планктоне и пузырьках и определить с высоким пространственным разрешением структуру пузырьковых облаков, образующихся при обрушении ветровых волн, и структуру планктонных сообществ. Участие планктона в волновом движении в толще морской воды позволяет определитьпараметры внутренних волн спектр и распределение по амплитудам в различное время.This paper represents the application of acoustic probingfor the investigation of acoustical properties of the upperlayer of the sea using broadband narrow-beam invertedtransducers that are mounted on the sea bottom. Thismethod is based on the principle of the recording of thebackscattering and reflections of acoustic pulses of differentfrequencies from the sea surface. That simultaneouslyallows measuring scattering and absorption of the soundand non-linear acoustic parameter of seawater. Multifrequencyprobing allows performing acoustic spectroscopy ofbubbles in the near-surface layer of the sea, estimating gascontent, and obtaining data on the spectrum of the surfacewaves in various states of the sea up to a storm. Utilizationof the high-frequency narrow ultrasound beams allows us toseparate the information about plankton and bubbles and todetermine the structure of bubble clouds, created during thebreaking of wind waves, along with the structure of planktoncommunities with high spatial resolution. The participationof plankton in the wave motion in the seawater columnallows determining parameters of internal waves, such asspectrum and distribution of amplitudes at different times.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Müller ◽  
Janna Kuchinka ◽  
Thomas Heinze

Abstract Magnetic nanocomposites are a class of smart materials that have attracted recent interest as drug delivery systems or as medical implants. A new approach toward the biocompatible nanocomposites suitable for remote melting is presented. It is shown that magnetite nanoparticles (MNPs) can be embedded into a matrix of biocompatible thermoplastic dextran esters. For that purpose, fatty acid esters of dextran with adjustable melting points in the range of 30–140 °C were synthesized. Esterification of the polysaccharide by activation of the acid as iminium chlorides guaranteed mild reaction conditions leading to high-quality products as confirmed by Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy as well as by gel permeation chromatography (GPC). A method for the preparation of magnetically responsive bionanocomposites (BNCs) was developed consisting of combined dissolution/suspension of the dextran ester and hydrophobized MNPs in an organic solvent followed by homogenization with ultrasonication, casting of the solution, drying and melting of the composite for a defined shaping. This process leads to a uniform distribution of MNPs in BNC as revealed by scanning electron microscope (SEM). Samples of different geometries were exposed to high-frequency alternating magnetic field (AMF). It could be shown that defined remote melting of such biocompatible nanocomposites is possible for the first time. This may lead to a new class of magnetic remote-control systems, which are suitable for controlled release applications or self-healing materials. BNCs containing biocompatible dextran fatty acid ester melting close to human body temperature were prepared and loaded with Rhodamine B (RhB) or green fluorescent protein (GFP) as model drugs to evaluate their potential use as drug delivery system. The release of the model drugs from the magnetic BNC investigated under the influence of a high-frequency AMF (20 kA/m at 400 kHz) showed that on-demand release is realized by applying the external AMF. The BNC possessed a long-term stability (28 d) of the incorporated iron oxide particles after incubation in artificial body fluids. Temperature-dependent mobility investigations of MNP in the molten BNC were carried out by optical microscopy, magnetometry, alternating current (AC) susceptibility, and Mössbauer spectroscopy measurements. Optical microscopy shows a movement of agglomerates and texturing in the micrometer scale, whereas AC susceptometry and Mössbauer spectroscopy investigations reveal that the particles perform diffusive Brownian motion in the liquid polymer melt as separated particles rather than as large agglomerates. Furthermore, a texturing of MNP in the polymer matrix by a static magnetic field gradient was investigated. First results on the preparation of cross-linkable dextran esters are shown. Cross-linking after irradiation of the BNC prevents melting that can be used to influence texturing procedures.


2020 ◽  
Vol 65 (1) ◽  
pp. 95-104
Author(s):  
H. Wu ◽  
Y. L. Chang ◽  
Alexandr Babkin ◽  
Boyoung Lee

1995 ◽  
Vol 12 (2) ◽  
pp. 180-185 ◽  
Author(s):  
D. J. Galloway ◽  
C. A. Jones

AbstractThis paper discusses problems which have as their uniting theme the need to understand the coupling between a stellar convection zone and a magnetically dominated corona above it. Interest is concentrated on how the convection drives the atmosphere above, loading it with the currents that give rise to flares and other forms of coronal activity. The role of boundary conditions appears to be crucial, suggesting that a global understanding of the magnetic field system is necessary to explain what is observed in the corona. Calculations are presented which suggest that currents flowing up a flux rope return not in the immediate vicinity of the rope but rather in an alternative flux concentration located some distance away.


Sign in / Sign up

Export Citation Format

Share Document