scholarly journals Magnetic Fields in Molecular Cloud Cores

1990 ◽  
Vol 140 ◽  
pp. 291-292
Author(s):  
Z.P. Zhou ◽  
X.W. Zheng

Strong circular polarization of OH masers at 1665 and 1667 MHz lines has been observed towards the molecular cloud cores associated with HII regions. Magnetic field strengths of a few mG are derived from the Zeeman splitting of OH lines. For instance, a magnetic field of about 4 mG in the masing region of W3(OH) has been estimated by OH-line Zeeman splitting (Davies, 1974). VLBI observations show that the OH maser spots project onto or very close to the surface of associated compact HII regions (Reid et al., 1986). The observational evidence demonstrates that the scales of OH maser components surrounding a compact HII region (R ~ 1016 cm) are about 1014 cm in diameter with an amplification pathlength of ~1015 cm. Hence the magnetic fields determined by the Zeeman splitting of OH maser lines appear partly very close to the associated HII region. Elitzur (1979) has theoretically obtained similar results as above.

1976 ◽  
Vol 32 ◽  
pp. 233-254
Author(s):  
H. M. Maitzen

Ap stars are peculiar in many aspects. During this century astronomers have been trying to collect data about these and have found a confusing variety of peculiar behaviour even from star to star that Struve stated in 1942 that at least we know that these phenomena are not supernatural. A real push to start deeper theoretical work on Ap stars was given by an additional observational evidence, namely the discovery of magnetic fields on these stars by Babcock (1947). This originated the concept that magnetic fields are the cause for spectroscopic and photometric peculiarities. Great leaps for the astronomical mankind were the Oblique Rotator model by Stibbs (1950) and Deutsch (1954), which by the way provided mathematical tools for the later handling pulsar geometries, anti the discovery of phase coincidence of the extrema of magnetic field, spectrum and photometric variations (e.g. Jarzebowski, 1960).


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1720
Author(s):  
Antonios Balassis ◽  
Godfrey Gumbs ◽  
Oleksiy Roslyak

We have investigated the α–T3 model in the presence of a mass term which opens a gap in the energy dispersive spectrum, as well as under a uniform perpendicular quantizing magnetic field. The gap opening mass term plays the role of Zeeman splitting at low magnetic fields for this pseudospin-1 system, and, as a consequence, we are able to compare physical properties of the the α–T3 model at low and high magnetic fields. Specifically, we explore the magnetoplasmon dispersion relation in these two extreme limits. Central to the calculation of these collective modes is the dielectric function which is determined by the polarizability of the system. This latter function is generated by transition energies between subband states, as well as the overlap of their wave functions.


1984 ◽  
Vol 110 ◽  
pp. 333-334
Author(s):  
J.A. Garcia-Barreto ◽  
B. F. Burke ◽  
M. J. Reid ◽  
J. M. Moran ◽  
A. D. Haschick

Magnetic fields play a major role in the general dynamics of astronomical phenomena and particularly in the process of star formation. The magnetic field strength in galactic molecular clouds is of the order of few tens of μG. On a smaller scale, OH masers exhibit fields of the order of mG and these can probably be taken as representative of the magnetic field in the dense regions surrounding protostars. The OH molecule has been shown to emit highly circular and linearly polarized radiation. That it was indeed the action of the magnetic field that would give rise to the highly polarized spectrum of OH has been shown by the VLBI observations of Zeeman pairs of the 1720 and 6035 MHz by Lo et. al. and Moran et. al. VLBI observations of W3 (OH) revealed that the OH emission was coming from numerous discrete locations and that all spots fell within the continuum contours of the compact HII region. The most detailed VLBI aperture synthesis experiment of the 1665 MHz emission from W3 (OH) was carried out by Reid et. al. who found several Zeeman pairs and a characteristic maser clump size of 30 mas. In this work, we report the results of a 5 station VLBI aperture synthesis experiment of the 1665 MHz OH emission from W3 (OH) with full polarization information. We produced VLBI synthesis maps of all Stokes parameters of 16 spectral features that showed elliptical polarization. The magnitude and direction of the magnetic field have been obtained by the detection of 7 Zeeman pairs. The three dimensional orientation of the magnetic field can be obtained, following the theoretical arguments of Goldreich et. al., from the observation of π and σ components.


Author(s):  
Fumitaka Nakamura ◽  
Seiji Kameno ◽  
Takayoshi Kusune ◽  
Izumi Mizuno ◽  
Kazuhito Dobashi ◽  
...  

Abstract We report the first clear detection of the Zeeman splitting of a CCS emission line at 45 GHz toward the nearby pre-stellar dense filament, Taurus Molecular Cloud 1 (TMC-1). We observed HC$_3$N non-Zeeman lines simultaneously with the CCS line, and did not detect any significant splitting of the HC$_3$N lines. Thus, we conclude that our detection of CCS Zeeman splitting is robust. The derived line-of-sight magnetic field strength is about $117 \pm 21 \, \mu$G, which corresponds to a normalized mass-to-magnetic flux ratio of 2.2 if we adopt an inclination angle of 45$^\circ$. Thus, we conclude that the TMC-1 filament is magnetically supercritical. Recent radiative transfer calculations of the CCS and HC$_3$N lines along the line of sight suggest that the filament is collapsing with a speed of $\sim$0.6 km s$^{-1}$, which is comparable to three times the isothermal sound speed. This infall velocity appears to be consistent with the evolution of a gravitationally infalling core.


1982 ◽  
Vol 4 (4) ◽  
pp. 434-440 ◽  
Author(s):  
J. B. Whiteoak ◽  
Robina E. Otrupcek ◽  
C. J. Rennie

The 4-m radio telescope of the CSIRO Division of Radiophysics at Epping is being used to survey the line emission associated with the 1→0 transition of CO (rest frequency 115.271 GHz) in the southern Milky Way. The programme includes mapping the CO distribution across giant molecular-cloud/HII-region complexes. As a first stage the emission has been observed towards bright southern HII regions. These results will not only serve as a basis for future extensive mapping but will also provide data which is directly comparable with observations of other molecular lines that have been made towards the HII regions.


1974 ◽  
Vol 60 ◽  
pp. 275-292 ◽  
Author(s):  
R. D. Davies

Observations of Class I OH maser sources show a range of features which are predicted on the basis of Zeeman splitting in a source magnetic field. Magnetic field strengths of 2 to 7 mG are derived for eight OH maser sources. The fields in all the clouds are directed in the sense of galactic rotation. A model of W3 OH is proposed which incorporates the magnetic field data. It is shown that no large amount of magnetic flux or angular momentum has been lost since the condensation from the interstellar medium began.


2008 ◽  
Vol 4 (S259) ◽  
pp. 107-108 ◽  
Author(s):  
Ryo Kandori ◽  
Motohide Tamura ◽  
Ken-ichi Tatematsu ◽  
Nobuhiko Kusakabe ◽  
Yasushi Nakajima ◽  
...  

AbstractMagnetic fields are believed to play an important role in controlling the stability and contraction of molecular cloud cores. In the present study, magnetic fields of a cold pre-stellar core, Barnard 68, have been mapped based on wide-field near-infrared polarimetric observations of background stars. A distinct “hourglass-shaped” magnetic field is identified toward the core, as the observational evidence of magnetic field structure distorted by mass accumulation in a pre-stellar core. Our findings on the geometry of magnetic fields as well as the mass-to-magnetic flux ratio are presented.


2019 ◽  
Vol 629 ◽  
pp. A83 ◽  
Author(s):  
N. Afram ◽  
S. V. Berdyugina

Context. Magnetic fields in cool stars can be investigated by measuring Zeeman line broadening and polarization in atomic and molecular lines. Similar to the Sun, these fields are complex and height-dependent. Many molecular lines dominating M-dwarf spectra (e.g., FeH, CaH, MgH, and TiO) are temperature- and Zeeman-sensitive and form at different atmospheric heights, which makes them excellent probes of magnetic fields on M dwarfs. Aims. Our goal is to analyze the complexity of magnetic fields in M dwarfs. We investigate how magnetic fields vary with the stellar temperature and how “surface” inhomogeneities are distributed in height – the dimension that is usually neglected in stellar magnetic studies. Methods. We have determined effective temperatures of the photosphere and of magnetic features, magnetic field strengths and filling factors for nine M dwarfs (M1–M7). Our χ2 analysis is based on a comparison of observed and synthetic intensity and circular polarization profiles. Stokes profiles were calculated by solving polarized radiative transfer equations. Results. Properties of magnetic structures depend on the analyzed atomic or molecular species and their formation heights. Two types of magnetic features similar to those on the Sun have been found: a cooler (starspots) and a hotter (network) one. The magnetic field strength in both starspots and network is within 3–6 kG, on average it is 5 kG. These fields occupy a large fraction of M dwarf atmospheres at all heights, up to 100%. The plasma β is less than one, implying highly magnetized stars. Conclusions. A combination of molecular and atomic species and a simultaneous analysis of intensity and circular polarization spectra have allowed us to better decipher the complexity of magnetic fields on M dwarfs, including their dependence on the atmospheric height. This work provides an opportunity to investigate a larger sample of M dwarfs and L-type brown dwarfs.


Sign in / Sign up

Export Citation Format

Share Document