scholarly journals Rotational Evolution of Intermediate and Low Mass Main Sequence Stars

2004 ◽  
Vol 215 ◽  
pp. 127-135
Author(s):  
John R. Stauffer

Bob Kraft (1967) showed that there is a break in the mean rotational velocity of stars at about spectral type F5, with more massive stars generally being rapid rotators and less massive stars generally being slow rotators. He also showed that in the late F spectral range at least, there is an evolution with time on the main sequence, with younger F stars being more rapidly rotating. Kraft's observational database extended only to about one solar mass due to the sensitivy limitations of photographic plates. Modern observations of low mass stars in open clusters, extending down in mass to nearly the hydrogen burning mass limit in a few clusters, have since been used to show that rotational spindown is the common feature of stars less massive than the sun but that there is a wide spread in rotational velocities when stars arrive on the ZAMS. I will review what is known empirically concerning the rotational velocities of intermediate and low mass field stars, using the open cluster data to place the field star observations in context.

2018 ◽  
Vol 619 ◽  
pp. A80 ◽  
Author(s):  
F. Gallet ◽  
E. Bolmont ◽  
J. Bouvier ◽  
S. Mathis ◽  
C. Charbonnel

Context. The surface angular velocity evolution of low-mass stars is now globally understood and the main physical mechanisms involved in it are observationally quite constrained. However, while the general behaviour of these mechanisms is grasped, their theoretical description is still under ongoing work. This is the case, for instance, about the description of the physical process that extracts angular momentum from the radiative core, which could be described by several theoretical candidates. Additionally, recent observations showed anomalies in the rotation period distribution of open cluster, main sequence, early K-type stars that cannot be reproduced by current angular momentum evolution models. Aims. In this work, we study the parameter space of star-planet system’s configurations to investigate if including the tidal star-planet interaction in angular momentum evolution models could reproduce the anomalies of this rotation period distribution. Methods. To study this effect, we use a parametric angular momentum evolution model that allows for core-envelope decoupling and angular momentum extraction by magnetized stellar wind that we coupled to an orbital evolution code where we take into account the torque due to the tides raised on the star by the planet. We explore different stellar and planetary configurations (stellar mass from 0.5 to 1.0 M⊙ and planetary mass from 10 M⊕ to 13 Mjup) to study their effect on the planetary orbital and stellar rotational evolution. Results. The stellar angular momentum is the most impacted by the star-planet interaction when the planet is engulfed during the early main sequence phase. Thus, if a close-in Jupiter-mass planet is initially located at around 50% of the stellar corotation radius, a kink in the rotational period distribution opens around late and early K-type stars during the early main sequence phase. Conclusions. Tidal star-planet interactions can create a kink in the rotation period distribution of low-mass stars, which could possibly account for unexpected scatter seen in the rotational period distribution of young stellar clusters.


2008 ◽  
Vol 4 (S258) ◽  
pp. 363-374 ◽  
Author(s):  
Jonathan Irwin ◽  
Jerome Bouvier

AbstractWe summarise recent progress in the understanding of the rotational evolution of low-mass stars (here defined as solar mass down to the hydrogen burning limit) both in terms of observations and modelling. Wide-field imaging surveys on moderate-size telescopes can now efficiently derive rotation periods for hundreds to thousands of open cluster members, providing unprecedented sample sizes which are ripe for exploration. We summarise the available measurements, and provide simple phenomenological and model-based interpretations of the presently-available data, while highlighting regions of parameter space where more observations are required, particularly at the lowest masses and ages ≳500 Myr.


1984 ◽  
Vol 105 ◽  
pp. 123-138
Author(s):  
R.D. Cannon

This review will attempt to do two things: (i) discuss some of the data which are available for testing the theory of evolution of low mass stars, and (ii) point out some problem areas where observations and theory do not seem to agree very well. This is of course too vast a field of research to be covered in one brief review, so I shall concentrate on one particular aspect, namely the study of star clusters and especially their colour-magnitude (CM) diagrams. Star clusters provide large samples of stars at the same distance and with the same age, and the CM diagram gives the easiest way of comparing theoretical predictions with observations, although crucial evidence is also provided by spectroscopic abundance analyses and studies of variable stars. Since this is primarily a review of observational data it is natural to divide it into two parts: (i) galactic globular clusters, and (ii) old and intermediate-age open clusters. Some additional evidence comes from Local Group galaxies, especially now that CM diagrams which reach the old main sequence are becoming available. For each class of cluster I shall consider successive stages of evolution from the main sequence, up the hydrogen-burning red giant branch, and through the helium-burning giant phase.


2020 ◽  
Vol 495 (2) ◽  
pp. 1978-1983
Author(s):  
Nate Bastian ◽  
Sebastian Kamann ◽  
Louis Amard ◽  
Corinne Charbonnel ◽  
Lionel Haemmerlé ◽  
...  

ABSTRACT We address the origin of the observed bimodal rotational distribution of stars in massive young and intermediate age stellar clusters. This bimodality is seen as split main sequences at young ages and also has been recently directly observed in the Vsini distribution of stars within massive young and intermediate age clusters. Previous models have invoked binary interactions as the origin of this bimodality, although these models are unable to reproduce all of the observational constraints on the problem. Here, we suggest that such a bimodal rotational distribution is set-up early within a cluster’s life, i.e. within the first few Myr. Observations show that the period distribution of low-mass ($\lesssim\! 2 \, \mathrm{M}_\odot$) pre-main-sequence (PMS) stars is bimodal in many young open clusters, and we present a series of models to show that if such a bimodality exists for stars on the PMS that it is expected to manifest as a bimodal rotational velocity (at fixed mass/luminosity) on the main sequence for stars with masses in excess of ∼1.5 M⊙. Such a bimodal period distribution of PMS stars may be caused by whether stars have lost (rapid rotators) or been able to retain (slow rotators) their circumstellar discs throughout their PMS lifetimes. We conclude with a series of predictions for observables based on our model.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Mai Yamashita ◽  
Yoichi Itoh ◽  
Yuhei Takagi

Abstract We investigated the chromospheric activity of 60 pre-main-sequence (PMS) stars in four molecular clouds and five moving groups. It is considered that strong chromospheric activity is driven by the dynamo processes generated by stellar rotation. In contrast, several researchers have pointed out that the chromospheres of PMS stars are activated by mass accretion from their protoplanetary disks. In this study, the Ca ii infrared triplet (IRT) emission lines were investigated utilizing medium- and high-resolution spectroscopy. The observations were conducted with Nayuta/MALLS and Subaru/HDS. Additionally, archive data obtained by Keck/HIRES, VLT/UVES, and VLT/X-Shooter were used. The small ratios of the equivalent widths indicate that Ca ii IRT emission lines arise primarily in dense chromospheric regions. Seven PMS stars show broad emission lines. Among them, four PMS stars have more than one order of magnitude brighter emission line fluxes compared to the low-mass stars in young open clusters. The four PMS stars have a high mass accretion rate, which indicates that the broad and strong emission results from a large mass accretion. However, most PMS stars exhibit narrow emission lines. No significant correlation was found between the accretion rate and flux of the emission line. The ratios of the surface flux of the Ca ii IRT lines to the stellar bolometric luminosity, $R^{\prime }_{\rm IRT}$, of the PMS stars with narrow emission lines are as large as the largest $R^{\prime }_{\rm IRT}$ of the low-mass stars in the young open clusters. This result indicates that most PMS stars, even in the classical T Tauri star stage, have chromospheric activity similar to zero-age main-sequence stars.


2007 ◽  
Vol 3 (S243) ◽  
pp. 231-240 ◽  
Author(s):  
Jérôme Bouvier

AbstractStar-disk interaction is thought to drive the angular momentum evolution of young stars. In this review, I present the latest results obtained on the rotational properties of low mass and very low mass pre-main sequence stars. I discuss the evidence for extremely efficient angular momentum removal over the first few Myr of pre-main sequence evolution and describe recent results that support an accretion-driven braking mechanism. Angular momentum evolution models are presented and their implication for accretion disk lifetimes discussed.


2007 ◽  
Vol 3 (S243) ◽  
pp. 241-248
Author(s):  
Jochen Eislöffel ◽  
Alexander Scholz

AbstractThe evolution of angular momentum is a key to our understanding of star formation and stellar evolution. The rotational evolution of solar-mass stars is mostly controlled by magnetic interaction with the circumstellar disc and angular momentum loss through stellar winds. Major differences in the internal structure of very low-mass stars and brown dwarfs – they are believed to be fully convective throughout their lives, and thus should not operate a solar-type dynamo – may lead to major differences in the rotation and activity of these objects. Here, we report on observational studies to understand the rotational evolution of the very low-mass stars and brown dwarfs.


2020 ◽  
Vol 640 ◽  
pp. A15
Author(s):  
A. Rainot ◽  
M. Reggiani ◽  
H. Sana ◽  
J. Bodensteiner ◽  
C. A. Gomez-Gonzalez ◽  
...  

Context. Massive stars like company. However, low-mass companions have remained extremely difficult to detect at angular separations (ρ) smaller than 1″ (approx. 1000–3000 au, considering the typical distance to nearby massive stars) given the large brightness contrast between the companion and the central star. Constraints on the low-mass end of the companions mass-function for massive stars are needed, however, for helping, for example, to distinguish among the various scenarios that describe the formation of massive stars. Aims. With the aim of obtaining a statistically significant constraint on the presence of low-mass companions beyond the typical detection limit of current surveys (Δmag ≲ 5 at ρ ≲ 1″), we initiated a survey of O and Wolf-Rayet stars in the Carina region using the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) coronagraphic instrument on the Very Large Telescope (VLT). In this, the first paper of the series, we aim to introduce the survey, to present the methodology and to demonstrate the capability of SPHERE for massive stars using the multiple system QZ Car. Methods. We obtained VLT-SPHERE snapshot observations in the IRDIFS_EXT mode, which combines the IFS and IRDIS sub-systems and simultaneously provides us four-dimensional (4D) data cubes in two different fields-of-view: 1.73″ × 1.73″ for IFS (39 spectral channels across the YJH bands) and 12″ × 12″ for IRDIS (two spectral channels across the K band). Angular- and spectral-differential imaging techniques as well as PSF-fitting were applied to detect and measure the relative flux of the companions in each spectral channel. The latter were then flux-calibrated using theoretical SED models of the central object and compared to a grid of ATLAS9 atmosphere model and (pre-)main-sequence evolutionary tracks, providing a first estimate of the physical properties of the detected companions. Results. Detection limits of 9 mag at ρ >  200 mas for IFS, and as faint as 13 mag at ρ > 1.​″8 for IRDIS (corresponding to sub-solar masses for potential companions), can be reached in snapshot observations of only a few minutes integration times, allowing us to detect 19 sources around the QZ Car system. All but two are reported here for the first time. With near-IR magnitude contrasts in the range of 4 to 7.5 mag, the three brightest sources (Ab, Ad, and E) are most likely to be physically bound. They have masses in the range of 2 to 12 M⊙ and are potentially co-eval with QZ Car central system. The remaining sources have flux contrast of 1.5 × 105 to 9.5 × 106 (ΔK ≈ 11 to 13 mag). Their presence can be explained by the local source density and they are, thus, likely to be chance alignments. If they were members of the Carina nebula, they would be sub-solar-mass pre-main sequence stars. Conclusions. Based on this proof of concept, we show that the VLT/SPHERE allows us to reach the sub-solar mass regime of the companion mass function. It paves the way for this type of observation with a large sample of massive stars to provide novel constraints on the multiplicity of massive stars in a region of the parameter space that has remained inaccessible so far.


2006 ◽  
Vol 2 (S239) ◽  
pp. 311-313
Author(s):  
Natália R. Landin ◽  
Paolo Ventura ◽  
Francesca D'Antona ◽  
Luiz T. S. Mendes ◽  
Luiz P. R. Vaz

AbstractThe observational data of the Orion Nebula Cluster (ONC) is reanalyzed by means of new sets of pre-main sequence (PMS) evolutionary tracks including rotation, non-gray boundary conditions (BC's) and either low (LCE) or high convection efficiency (HCE), aiming better understanding of the appropriate physical constraints for the rotational evolution of the stars within the ONC. The role played by convection is a key aspect of our analysis, since there are conflicting results from theory and observations. We derived stellar masses and ages for the ONC by using both LCE and HCE and considered was the role of non-gray atmospheres. Our results show that the resulting mass distribution for the bulk of the ONC population is in the range 0.2-0.4M⊙ for our non-gray models, and in the range 0.1-0.3M⊙ for gray models. In agreement with previous works, we found that a large percentage (∼70%) of low-mass stars (M≤Mtr, where Mtr is a transition mass) in the ONC appears to be fast rotators (P<4days). Mtr depends on the model choosen, being Mtr=0.5 for LCE, Mtr=0.35 for HCE and, as found in previous works, Mtr=0.25 for gray models. Finally, our analysis indicates that a second parameter is needed for a proper description of convection in the PMS phase.


2018 ◽  
Vol 611 ◽  
pp. A34 ◽  
Author(s):  
Stanislav Melnikov ◽  
Jochen Eislöffel

Context. Unlike young open clusters (with ages < 250 Myr), the Hyades cluster (age ~ 600 Myr) has a clear deficit of very low-mass stars (VLM) and brown dwarfs (BD). Since this open cluster has a low stellar density and covers several tens of square degrees on the sky, extended surveys are required to improve the statistics of the VLM/BD objects in the cluster. Aim. We search for new VLM stars and BD candidates in the Hyades cluster to improve the present-day cluster mass function down to substellar masses. Methods. An imaging survey of the Hyades with a completeness limit of 21.m5 in the R band and 20.m5 in the I band was carried out with the 2k × 2k CCD Schmidt camera at the 2 m Alfred Jensch Telescope in Tautenburg. We performed a photometric selection of the cluster member candidates by combining results of our survey with 2MASS JHKs photometry Results. We present a photometric and proper motion survey covering 23.4 deg2 in the Hyades cluster core region. Using optical/IR colour-magnitude diagrams, we identify 66 photometric cluster member candidates in the magnitude range 14.m7 < I < 20.m5. The proper motion measurements are based on several all-sky surveys with an epoch difference of 60–70 yr for the bright objects. The proper motions allowed us to discriminate the cluster members from field objects and resulted in 14 proper motion members of the Hyades. We rediscover Hy 6 as a proper motion member and classify it as a substellar object candidate (BD) based on the comparison of the observed colour-magnitude diagram with theoretical model isochrones. Conclusions. With our results, the mass function of the Hyades continues to be shallow below ~0.15 M⊙ indicating that the Hyades have probably lost their lowest mass members by means of dynamical evolution. We conclude that the Hyades core represents the “VLM/BD desert” and that most of the substeller objects may have already left the volume of the cluster.


Sign in / Sign up

Export Citation Format

Share Document