scholarly journals Magnetic Configuration and Evolution in a Solar Active Region

2001 ◽  
Vol 203 ◽  
pp. 294-296
Author(s):  
Y. Liu ◽  
H. Zhang

We present results of the analysis of NOAA 8668, which was observed successively by space satellite (SOHO) and ground-based observatories (BBSO, Huairou). The combined observation offers us a good example of a region observed from low to high solar atmosphere. Several flares and a sigmoid filament were observed in the AR, and we observed the sigmoid filament from its birth to disintegration. The configuration of the magnetic field of the AR changed quickly as well as the loops. From EIT movies, we can even judge the sign of the sigmoid filament's magnetic helicity. The forming and heating of the loops were the result of magnetic reconnection, and the corona seemed heated when the loops became opened.

2018 ◽  
Vol 613 ◽  
pp. A27 ◽  
Author(s):  
Shangbin Yang ◽  
Jörg Büchner ◽  
Jan Skála ◽  
Hongqi Zhang

Context. For a better understanding of the dynamics of the solar corona, it is important to analyse the evolution of the helicity of the magnetic field. Since the helicity cannot be directly determined by observations, we have recently proposed a method to calculate the relative magnetic helicity in a finite volume for a given magnetic field, which however required the flux to be balanced separately on all the sides of the considered volume. Aims. We developed a scheme to obtain the vector potential in a volume without the above restriction at the boundary. We studied the dissipation and escape of relative magnetic helicity from an active region. Methods. In order to allow finite magnetic fluxes through the boundaries, a Coulomb gauge was constructed that allows for global magnetic flux balance. The property of sinusoidal function was used to obtain the vector potentials at the 12 edges of the considered rectangular volume extending above an active region. We tested and verified our method in a theoretical fore-free magnetic field model. Results. We applied the new method to the former calculation data and found a difference of less than 1.2%. We also applied our method to the magnetic field above active region NOAA 11429 obtained by a new photospheric-data-driven magnetohydrodynamics (MHD) model code GOEMHD3. We analysed the magnetic helicity evolution in the solar corona using our new method. We find that the normalized magnetic helicity (H∕Φ2) is equal to −0.038 when fast magnetic reconnection is triggered. This value is comparable to the previous value (−0.029) in the MHD simulations when magnetic reconnection happened and the observed normalized magnetic helicity (−0.036) from the eruption of newly emerging active regions. We find that only 8% of the accumulated magnetic helicity is dissipated after it is injected through the bottom boundary. This is in accordance with the Woltjer conjecture. Only 2% of the magnetic helicity injected from the bottom boundary escapes through the corona. This is consistent with the observation of magnetic clouds, which could take magnetic helicity into the interplanetary space. In the case considered here, several halo coronal mass ejections (CMEs) and two X-class solar flares originate from this active region.


2020 ◽  
Vol 635 ◽  
pp. A95 ◽  
Author(s):  
C. Prior ◽  
G. Hawkes ◽  
M. A. Berger

Context. Magnetic helicity is approximately conserved in resistive magnetohydrodynamic models. It quantifies the entanglement of the magnetic field within the plasma. The transport and removal of helicity is crucial in both dynamo development in the solar interior and active region evolution in the solar corona. This transport typically leads to highly inhomogeneous distributions of entanglement. Aims. There exists no consistent systematic means of decomposing helicity over varying spatial scales and in localised regions. Spectral helicity decompositions can be used in periodic domains and is fruitful for the analysis of homogeneous phenomena. This paper aims to develop methods for analysing the evolution of magnetic field topology in non-homogeneous systems. Methods. The method of multi-resolution wavelet decomposition is applied to the magnetic field. It is demonstrated how this decomposition can further be applied to various quantities associated with magnetic helicity, including the field line helicity. We use a geometrical definition of helicity, which allows these quantities to be calculated for fields with arbitrary boundary conditions. Results. It is shown that the multi-resolution decomposition of helicity has the crucial property of local additivity. We demonstrate a general linear energy-topology conservation law, which significantly generalises the two-point correlation decomposition used in the analysis of homogeneous turbulence and periodic fields. The localisation property of the wavelet representation is shown to characterise inhomogeneous distributions, which a Fourier representation cannot. Using an analytic representation of a resistive braided field relaxation, we demonstrate a clear correlation between the variations in energy at various length scales and the variations in helicity at the same spatial scales. Its application to helicity flows in a surface flux transport model show how various contributions to the global helicity input from active region field evolution and polar field development are naturally separated by this representation. Conclusions. The multi-resolution wavelet decomposition can be used to analyse the evolution of helicity in magnetic fields in a manner which is consistently additive. This method has the advantage over more established spectral methods in that it clearly characterises the inhomogeneous nature of helicity flows where spectral methods cannot. Further, its applicability in aperiodic models significantly increases the range of potential applications.


1968 ◽  
Vol 35 ◽  
pp. 131-133
Author(s):  
M. Kopecký ◽  
G. V. Kuklin

In some recent papers the interdependence of the gas and magnetic-field motions in the solar atmosphere was considered. Some results indicate the occurrence of gas motion along the magnetic-field lines combined with motion of the field line, but sometimes we have to assume an obvious gas motion across the magnetic-field lines. As one of the possible mechanisms explaining this fact the anomalous plasma diffusion may be proposed.


2002 ◽  
Vol 9 (2) ◽  
pp. 139-147 ◽  
Author(s):  
T. Wiegelmann ◽  
J. Büchner

Abstract. We investigate the evolution of magnetic helicity under kinetic magnetic reconnection in thin current sheets. We use Harris sheet equilibria and superimpose an external magnetic guide field. Consequently, the classical 2D magnetic neutral line becomes a field line here, causing a B ≠ 0 reconnection. While without a guide field, the Hall effect leads to a quadrupolar structure in the perpendicular magnetic field and the helicity density, this effect vanishes in the B ≠ 0 reconnection. The reason is that electrons are magnetized in the guide field and the Hall current does not occur. While a B = 0 reconnection leads just to a bending of the field lines in the reconnection area, thus conserving the helicity, the initial helicity is reduced for a B ≠ 0 reconnection. The helicity reduction is, however, slower than the magnetic field dissipation. The simulations have been carried out by the numerical integration of the Vlasov-equation.


2017 ◽  
Vol 601 ◽  
pp. A26 ◽  
Author(s):  
F. P. Zuccarello ◽  
R. Chandra ◽  
B. Schmieder ◽  
G. Aulanier ◽  
R. Joshi

Context. Solar flares are sudden and violent releases of magnetic energy in the solar atmosphere that can be divided into two classes: eruptive flares, where plasma is ejected from the solar atmosphere resulting in a coronal mass ejection (CME), and confined flares, where no CME is associated with the flare. Aims. We present a case study showing the evolution of key topological structures, such as spines and fans, which may determine the eruptive versus non-eruptive behavior of the series of eruptive flares followed by confined flares, which all originate from the same site. Methods. To study the connectivity of the different flux domains and their evolution, we compute a potential magnetic field model of the active region. Quasi-separatrix layers are retrieved from the magnetic field extrapolation. Results. The change in behavior of the flares from one day to the next – from eruptive to confined – can be attributed to the change in orientation of the magnetic field below the fan with respect to the orientation of the overlaying spine rather than an overall change in the stability of the large-scale field. Conclusions. Flares tend to be more confined when the field that supports the filament and the overlying field gradually becomes less anti-parallel as a direct result of changes in the photospheric flux distribution, being themselves driven by continuous shearing motions of the different magnetic flux concentrations.


2014 ◽  
Vol 10 (S305) ◽  
pp. 35-41
Author(s):  
Sarah A. Jaeggli

AbstractNOAA 11035 was a highly sheared active region that appeared in December 2009 early in the new activity cycle. The leading polarity sunspot developed a highly unusual feature in its penumbra, an opposite polarity pore with a strong magnetic field in excess of 3500 G along one edge, which persisted for several days during the evolution of the region. This region was well observed by both space- and ground-based observatories, including Hinode, FIRS, TRACE, and SOHO. These observations, which span wavelength and atmospheric regimes, provide a complete picture of this unusual feature which may constitute a force-free magnetic field in the photosphere which is produced by the reconnection of magnetic loops low in the solar atmosphere.


2021 ◽  
Vol 44 ◽  
pp. 92-95
Author(s):  
A.I. Podgorny ◽  
◽  
I.M. Podgorny ◽  
A.V. Borisenko ◽  
N.S. Meshalkina ◽  
...  

Primordial release of solar flare energy high in corona (at altitudes 1/40 - 1/20 of the solar radius) is explained by release of the magnetic energy of the current sheet. The observed manifestations of the flare are explained by the electrodynamical model of a solar flare proposed by I. M. Podgorny. To study the flare mechanism is necessary to perform MHD simulations above a real active region (AR). MHD simulation in the solar corona in the real scale of time can only be carried out thanks to parallel calculations using CUDA technology. Methods have been developed for stabilizing numerical instabilities that arise near the boundary of the computational domain. Methods are applicable for low viscosities in the main part of the domain, for which the flare energy is effectively accumulated near the singularities of the magnetic field. Singular lines of the magnetic field, near which the field can have a rather complex configuration, coincide or are located near the observed positions of the flare.


2012 ◽  
Vol 8 (S294) ◽  
pp. 13-24
Author(s):  
Hongqi Zhang

AbstractThe helicity is important to present the basic topological configuration of magnetic field in solar atmosphere. The distribution of magnetic helicity in solar atmosphere is presented by means of the observational (vector) magnetograms. As the kinetic helicity in the solar subatmosphere can be inferred from the velocity field based on the technique of the helioseismology and used to compare with the magnetic helicity in the solar atmosphere, the observational helicities provide the important chance for the confirmation on the generation of magnetic fields in the subatmosphere and solar dynamo models also. In this paper, we present the observational magnetic and kinetic helicity in solar active regions and corresponding questions, except the relationship with solar eruptive phenomena.


Sign in / Sign up

Export Citation Format

Share Document