scholarly journals Multiplicity of Massive Stars

2001 ◽  
Vol 200 ◽  
pp. 69-78 ◽  
Author(s):  
Thomas Preibisch ◽  
Gerd Weigelt ◽  
Hans Zinnecker

We discuss the observed multiplicity of massive stars and implications on theories of massive star formation. After a short summary of the literature on massive star multiplicity, we focus on the O-and B-type stars in the Orion Nebula Cluster, which constitute a homogenous sample of very young massive stars. 13 of these stars have recently been the targets of a bispectrum speckle interferometry survey for companions. Considering the visual and also the known spectroscopic companions of these stars, the total number of companions is at least 14. Extrapolation with correction for the unresolved systems suggests that there are at least 1.5 and perhaps as much as 4 companions per primary star on average. This number is clearly higher than the mean number of ∼ 0.5 companions per primary star found for the low-mass stars in the general field population and also in the Orion Nebula cluster. This suggests that a different mechanism is at work in the formation of high-mass multiple systems in the dense Orion Nebula cluster than for low-mass stars.

2007 ◽  
Vol 3 (S246) ◽  
pp. 69-70 ◽  
Author(s):  
S. Pfalzner ◽  
Ch. Olczak

AbstractObservations show that for massive stars the binary frequency seems to be higher than for lower mass stars in young dense clusters. This suggests that in clusters like the ONC different mechanisms are at work in the formation of high-mass binary or multiple systems than for low-mass stars. We investigate the stellar dynamics in young dense clusters to determine the role of capture in binary formation in high-mass stars. It turns out that in contrast to lower mass stars capture is a frequent process for massive stars. However, this does not necessarily lead to long lasting binary systems but is often of transient nature. Nevertheless, capture processes could account for 15-25% of the observed ‘binaries’ of the OB-stars (75%) in Orion.


2002 ◽  
Vol 12 ◽  
pp. 143-145 ◽  
Author(s):  
Lee G. Mundy ◽  
Friedrich Wyrowski ◽  
Sarah Watt

Millimeter and submillimeter wavelength images of massive star-forming regions are uncovering the natal material distribution and revealing the complexities of their circumstellar environments on size scales from parsecs to 100’s of AU. Progress in these areas has been slower than for low-mass stars because massive stars are more distant, and because they are gregarious siblings with different evolutionary stages that can co-exist even within a core. Nevertheless, observational goals for the near future include the characterization of an early evolutionary sequence for massive stars, determination if the accretion process and formation sequence for massive stars is similar to that of low-mass stars, and understanding of the role of triggering events in massive star formation.


2004 ◽  
Vol 191 ◽  
pp. 104-108
Author(s):  
R. Köhler

AbstractWe report on the results of a binary survey in the outer parts of the Orion Nebula Cluster, 0.7 to 2 pc from the cluster center. The results should help to decide if the binary formation rate was lower in Orion than in Taurus-Auriga, or if many binaries formed initially, but were destroyed in close stellar encounters. We find that the binary frequency of low-mass stars does not depend on the distance to the cluster center. The companion star frequency of intermediate- to high-mass stars shows a trend to decrease with cluster radius, but the statistical significance of this trend is rather weak.


2009 ◽  
Vol 5 (H15) ◽  
pp. 760-760
Author(s):  
H. Zinnecker

Massive stars are known to be multiple systems, often in tight, short-period OB stars binaries (SB1 and SB2, found by spectroscopic monitoring). However, little is known about low-mass companions to massive stars, such as A, F, and G stars with masses in the range of 1 to 3 solar masses. Yet systems of massive stars with wide low-mass companions (of the order of a few AU) must exist, for these are the progenitors of LMXB and HMXB (low-mass and high-mass X-ray binaries).


1997 ◽  
Vol 182 ◽  
pp. 561-570
Author(s):  
W. J. Henney ◽  
S. J. Arthur

Many low-mass stars in the Orion nebula are associated with very compact (≃ 1 arcsec) emission knots, known variously as proplyds, PIGs or LV knots. Some of these knots are teardrop-shaped, with “tails” pointing away from the massive star θ1 Ori C, which is the principal exciting star of the nebula. We discuss models of such knots, which invoke the interaction of the fast stellar wind from θ1 Ori C with a transonic photoevaporated flow from the surface of an accretion disk around a young low-mass star. We review previous analytic work and compare the results of the model with the observed brightnesses, morphologies and emission line profiles of the knots, as well as presenting new results from numerical hydrodynamical simulations.


2014 ◽  
Vol 9 (S307) ◽  
pp. 431-436
Author(s):  
F. Navarete ◽  
A. Damineli ◽  
C. L. Barbosa ◽  
R. D. Blum

AbstractWe present preliminary results from a survey of molecular H2 (2.12 μm) emission in massive young stellar objects (MYSO) candidates selected from the Red MSX Source survey. We observed 354 MYSO candidates through the H2 S(1) 1-0 transition (2.12 μm) and an adjacent continuum narrow-band filters using the Spartan/SOAR and WIRCam/CFHT cameras. The continuum-subtracted H2 maps were analyzed and extended H2 emission was found in 50% of the sample (178 sources), and 38% of them (66) have polar morphology, suggesting collimated outflows. The polar-like structures are more likely to be driven on radio-quiet sources, indicating that these structures occur during the pre-ultra compact H ii phase. We analyzed the continuum images and found that 54% (191) of the sample displayed extended continuum emission and only ~23% (80) were associated to stellar clusters. The extended continuum emission is correlated to the H2 emission and those sources within stellar clusters does display diffuse H2 emission, which may be due to fluorescent H2 emission. These results support the accretion scenario for massive star formation, since the merging of low-mass stars would not produce jet-like structures. Also, the correlation between jet-like structures and radio-quiet sources indicates that higher inflow rates are required to form massive stars in a typical timescale less than 105 years.


2014 ◽  
Vol 9 (S307) ◽  
pp. 96-97
Author(s):  
W. Chantereau ◽  
C. Charbonnel ◽  
G. Meynet

AbstractGlobular clusters are among the oldest structures in the Universe and they host today low-mass stars and no gas. However, there has been a time when they formed as gaseous objects hosting a large number of short-lived, massive stars. Many details on this early epoch have been depicted recently through unprecedented dissection of low-mass globular cluster stars via spectroscopy and photometry. In particular, multiple populations have been identified, which bear the nucleosynthetic fingerprints of the massive hot stars disappeared a long time ago. Here we discuss how massive star archeology can be done through the lense of these multiple populations.


2010 ◽  
Vol 6 (S270) ◽  
pp. 57-64
Author(s):  
Ian A. Bonnell ◽  
Rowan J Smith

AbstractThere has been considerable progress in our understanding of how massive stars form but still much confusion as to why they form. Recent work from several sources has shown that the formation of massive stars through disc accretion, possibly aided by gravitational and Rayleigh-Taylor instabilities is a viable mechanism. Stellar mergers, on the other hand, are unlikely to occur in any but the most massive clusters and hence should not be a primary avenue for massive star formation. In contrast to this success, we are still uncertain as to how the mass that forms a massive star is accumulated. there are two possible mechanisms including the collapse of massive prestellar cores and competitive accretion in clusters. At present, there are theoretical and observational question marks as to the existence of high-mass prestellar cores. theoretically, such objects should fragment before they can attain a relaxed, centrally condensed and high-mass state necessary to form massive stars. Numerical simulations including cluster formation, feedback and magnetic fields have not found such objects but instead point to the continued accretion in a cluster potential as the primary mechanism to form high-mass stars. Feedback and magnetic fields act to slow the star formation process and will reduce the efficiencies from a purely dynamical collapse but otherwise appear to not significantly alter the process.


1987 ◽  
Vol 115 ◽  
pp. 64-66
Author(s):  
Yoshio Tomita ◽  
Hiroshi Ohtani

To find evidence for collective star formation without massive stars in the dark cloud complex Kh141 (Saito 1980), a search for T-Tauri stars has been made.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 473-473
Author(s):  
Dorottya Szécsi ◽  
Jonathan Mackey ◽  
Norbert Langer

AbstractThe first stellar generation in galactic globular clusters contained massive low-metallicity stars (Charbonnel et al. 2014). We modelled the evolution of this massive stellar population and found that such stars with masses 100-600 M⊙ evolve into cool RSGs (Szécsi et al. 2015). These RSGs spend not only the core-He-burning phase but even the last few 105 years of the core-H-burning phase on the SG branch. Due to the presence of hot massive stars in the cluster at the same time, we show that the RSG wind is trapped into photoionization confined shells (Mackey et al. 2014). We simulated the shell formation around such RSGs and find them to become gravitationally unstable (Szécsi et al. 2016). We propose a scenario in which these shells are responsible for the formation of the second generation low-mass stars in globular clusters with anomalous surface abundances.


Sign in / Sign up

Export Citation Format

Share Document