scholarly journals Impact of Magnetic Fields on Fragmentation

2001 ◽  
Vol 200 ◽  
pp. 371-380 ◽  
Author(s):  
Alan P. Boss

Fragmentation is the leading explanation for the formation of binary and multiple stars. However, nearly all three dimensional calculations of the collapse and fragmentation of dense molecular cloud cores have ignored the effects of magnetic fields, whereas magnetic fields are generally regarded to be a dominant force in molecular clouds. Three dimensional models of the collapse of clouds with frozen-in magnetic fields have shown that such clouds cannot fragment for a range of initial conditions. However, calculations that allow for magnetic field loss by am-bipolar diffusion have shown that fragmentation is possible for initially prolate or oblate, rotating, magnetically-supported cloud cores. The latter calculations rely on approximations that should be verified by more detailed, traditional magnetohydrodynamical codes. The most obvious effect of magnetic fields is to delay the onset of the collapse phase, but once collapse begins in earnest, fragmentation proceeds in much the same manner as in nonmagnetic clouds, with initially prolate clouds tending to form binary protostars, and with initially oblate clouds tending to form multiple protostars.

2020 ◽  
Vol 497 (1) ◽  
pp. 336-351 ◽  
Author(s):  
Piyush Sharda ◽  
Christoph Federrath ◽  
Mark R Krumholz

ABSTRACT Magnetic fields play an important role for the formation of stars in both local and high-redshift galaxies. Recent studies of dynamo amplification in the first dark matter haloes suggest that significant magnetic fields were likely present during the formation of the first stars in the Universe at redshifts of 15 and above. In this work, we study how these magnetic fields potentially impact the initial mass function (IMF) of the first stars. We perform 200 high-resolution, three-dimensional (3D), magnetohydrodynamic (MHD) simulations of the collapse of primordial clouds with different initial turbulent magnetic field strengths as predicted from turbulent dynamo theory in the early Universe, forming more than 1100 first stars in total. We detect a strong statistical signature of suppressed fragmentation in the presence of strong magnetic fields, leading to a dramatic reduction in the number of first stars with masses low enough that they might be expected to survive to the present-day. Additionally, strong fields shift the transition point where stars go from being mostly single to mostly multiple to higher masses. However, irrespective of the field strength, individual simulations are highly chaotic, show different levels of fragmentation and clustering, and the outcome depends on the exact realization of the turbulence in the primordial clouds. While these are still idealized simulations that do not start from cosmological initial conditions, our work shows that magnetic fields play a key role for the primordial IMF, potentially even more so than for the present-day IMF.


2001 ◽  
Vol 200 ◽  
pp. 391-400 ◽  
Author(s):  
Shu-ichiro Inutsuka ◽  
Toru Tsuribe

The formation and evolution processes of magnetized filamentary molecular clouds are investigated in detail by linear stability analyses and non-linear numerical calculations. A one-dimensionally compressed self-gravitating sheet-like cloud breaks up into filamentary clouds. The directions of the longitudinal axes of the resulting filaments are perpendicular to the directions of magnetic field lines unless the column density of the sheet is very small. These magnetized filaments tend to collapse radially without characteristic density, length, and mass scale for the further fragmentation during the isothermal phase. The characteristic minimum mass for the final fragmentation is obtained by the investigation of thermal processes. The essential points of the above processes are analytically explained in terms of the basic physics. A theory for the expected mass function of dense molecular cloud cores is obtained. The expected mean surface density of companions of dense cores is also discussed.


2008 ◽  
Vol 4 (S259) ◽  
pp. 115-116
Author(s):  
Takahiro Kudoh ◽  
Shantanu Basu

AbstractWe find that the star formation is accelerated by the supersonic turbulence in the magnetically dominated (subcritical) clouds. We employ a fully three-dimensional simulation to study the role of magnetic fields and ion-neutral friction in regulating gravitationally driven fragmentation of molecular clouds. The time-scale of collapsing core formation in subcritical clouds is a few ×107 years when starting with small subsonic perturbations. However, it is shortened to approximately several ×106 years by the supersonic flows in the clouds. We confirm that higher-spacial resolution simulations also show the same result.


2014 ◽  
Vol 21 (3) ◽  
pp. 587-604 ◽  
Author(s):  
D. Falceta-Gonçalves ◽  
G. Kowal ◽  
E. Falgarone ◽  
A. C.-L. Chian

Abstract. Turbulence is ubiquitous in the insterstellar medium and plays a major role in several processes such as the formation of dense structures and stars, the stability of molecular clouds, the amplification of magnetic fields, and the re-acceleration and diffusion of cosmic rays. Despite its importance, interstellar turbulence, like turbulence in general, is far from being fully understood. In this review we present the basics of turbulence physics, focusing on the statistics of its structure and energy cascade. We explore the physics of compressible and incompressible turbulent flows, as well as magnetised cases. The most relevant observational techniques that provide quantitative insights into interstellar turbulence are also presented. We also discuss the main difficulties in developing a three-dimensional view of interstellar turbulence from these observations. Finally, we briefly present what the main sources of turbulence in the interstellar medium could be.


Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 41
Author(s):  
Hua-Bai Li

The Zeeman effect and dust grain alignment are two major methods for probing magnetic fields (B-fields) in molecular clouds, largely motivated by the study of star formation, as the B-field may regulate gravitational contraction and channel turbulence velocity. This review summarizes our observations of B-fields over the past decade, along with our interpretation. Galactic B-fields anchor molecular clouds down to cloud cores with scales around 0.1 pc and densities of 104–5 H2/cc. Within the cores, turbulence can be slightly super-Alfvénic, while the bulk volumes of parental clouds are sub-Alfvénic. The consequences of these largely ordered cloud B-fields on fragmentation and star formation are observed. The above paradigm is very different from the generally accepted theory during the first decade of the century, when cloud turbulence was assumed to be highly super-Alfvénic. Thus, turbulence anisotropy and turbulence-induced ambipolar diffusion are also revisited.


2006 ◽  
Vol 2 (S237) ◽  
pp. 141-147
Author(s):  
Richard M. Crutcher ◽  
Thomas H. Troland

AbstractAlthough the subject of this meeting is triggered star formation in a turbulent interstellar medium, it remains unsettled what role magnetic fields play in the star formation process. This paper briefly reviews star formation model predictions for the ratio of mass to magnetic flux, describes how Zeeman observations can test these predictions, describes new results – an extensive OH Zeeman survey of dark cloud cores with the Arecibo telescope, and discusses the implications. Conclusions are that the new data support and extend the conclusions based on the older observational results – that observational data on magnetic fields in molecular clouds are consistent with the strong magnetic field model of star formation. In addition, the observational data on magnetic field strengths in the interstellar medium strongly suggest that molecular clouds must form primarily by accumulation of matter along field lines. Finally, a future observational project is described that could definitively test the ambipolar diffusion model for the formation of cores and hence of stars.


1975 ◽  
Vol 39 (8) ◽  
pp. 544-546
Author(s):  
HL Wakkerman ◽  
GS The ◽  
AJ Spanauf

2009 ◽  
Vol 37 (2) ◽  
pp. 62-102 ◽  
Author(s):  
C. Lecomte ◽  
W. R. Graham ◽  
D. J. O’Boy

Abstract An integrated model is under development which will be able to predict the interior noise due to the vibrations of a rolling tire structurally transmitted to the hub of a vehicle. Here, the tire belt model used as part of this prediction method is first briefly presented and discussed, and it is then compared to other models available in the literature. This component will be linked to the tread blocks through normal and tangential forces and to the sidewalls through impedance boundary conditions. The tire belt is modeled as an orthotropic cylindrical ring of negligible thickness with rotational effects, internal pressure, and prestresses included. The associated equations of motion are derived by a variational approach and are investigated for both unforced and forced motions. The model supports extensional and bending waves, which are believed to be the important features to correctly predict the hub forces in the midfrequency (50–500 Hz) range of interest. The predicted waves and forced responses of a benchmark structure are compared to the predictions of several alternative analytical models: two three dimensional models that can support multiple isotropic layers, one of these models include curvature and the other one is flat; a one-dimensional beam model which does not consider axial variations; and several shell models. Finally, the effects of internal pressure, prestress, curvature, and tire rotation on free waves are discussed.


2020 ◽  
Vol 17 (4) ◽  
pp. 342-351
Author(s):  
Sergio A. Durán-Pérez ◽  
José G. Rendón-Maldonado ◽  
Lucio de Jesús Hernandez-Diaz ◽  
Annete I. Apodaca-Medina ◽  
Maribel Jiménez-Edeza ◽  
...  

Background: The protozoan Giardia duodenalis, which causes giardiasis, is an intestinal parasite that commonly affects humans, mainly pre-school children. Although there are asymptomatic cases, the main clinical features are chronic and acute diarrhea, nausea, abdominal pain, and malabsorption syndrome. Little is currently known about the virulence of the parasite, but some cases of chronic gastrointestinal alterations post-infection have been reported even when the infection was asymptomatic, suggesting that the cathepsin L proteases of the parasite may be involved in the damage at the level of the gastrointestinal mucosa. Objective: The aim of this study was the in silico identification and characterization of extracellular cathepsin L proteases in the proteome of G. duodenalis. Methods: The NP_001903 sequence of cathepsin L protease from Homo sapienswas searched against the Giardia duodenalisproteome. The subcellular localization of Giardia duodenaliscathepsin L proteases was performed in the DeepLoc-1.0 server. The construction of a phylogenetic tree of the extracellular proteins was carried out using the Molecular Evolutionary Genetics Analysis software (MEGA X). The Robetta server was used for the construction of the three-dimensional models. The search for possible inhibitors of the extracellular cathepsin L proteases of Giardia duodenaliswas performed by entering the three-dimensional structures in the FINDSITEcomb drug discovery tool. Results: Based on the amino acid sequence of cathepsin L from Homo sapiens, 8 protein sequences were identified that have in their modular structure the Pept_C1A domain characteristic of cathepsins and two of these proteins (XP_001704423 and XP_001704424) are located extracellularly. Threedimensional models were designed for both extracellular proteins and several inhibitory ligands with a score greater than 0.9 were identified. In vitrostudies are required to corroborate if these two extracellular proteins play a role in the virulence of Giardia duodenalisand to discover ligands that may be useful as therapeutic targets that interfere in the mechanism of pathogenesis generated by the parasite. Conclusion: In silicoanalysis identified two proteins in the Giardia duodenalisprotein repertoire whose characteristics allowed them to be classified as cathepsin L proteases, which may be secreted into the extracellular medium to act as virulence factors. Three-dimensional models of both proteins allowed the identification of inhibitory ligands with a high score. The results suggest that administration of those compounds might be used to block the endopeptidase activity of the extracellular cathepsin L proteases, interfering with the mechanisms of pathogenesis of the protozoan parasite Giardia duodenalis.


Sign in / Sign up

Export Citation Format

Share Document