scholarly journals Amplification of Waves Reflected from Kerr Black Holes

1974 ◽  
Vol 64 ◽  
pp. 94-94 ◽  
Author(s):  
A. A. Starobinsky

The effect of amplification of electromagnetic and gravitational waves reflected from a rotating black hole (‘superradiance scattering’) is investigated. This effect was proposed by Zel'dovich (1971). It leads, as well as the Penrose process, to the energy extraction from a Kerr black hole at the expense of its rotational energy and momentum decrease. The coefficient of wave reflection R>1 if ω<nω, where ω is the wave frequency, n - its angular momentum and ω is the black hole angular velocity. The value of this effect is not small in the case of gravitational waves, for example, if l=n = 2, ω →nω and a = M, then R≈2.38.There also exists a quantum version of the effect, namely, the one of spontaneous pair creation in the Kerr metric, but this quantum effect is exceedingly small in real astrophysical conditions, because its characteristic time is of the order G2M3/hc4, where M is the black hole mass.

2016 ◽  
Vol 12 (S324) ◽  
pp. 273-278
Author(s):  
Robert Lasenby

AbstractBosonic fields around a spinning black hole can be amplified via ‘superradiance’, a wave analogue of the Penrose process, which extracts energy and momentum from the black hole. For hypothetical ultra-light bosons, with Compton wavelengths on ≳ km scales, such a process can lead to the exponential growth of gravitationally bound states around astrophysical Kerr black holes. If such particles exist, as predicted in many theories of beyond Standard Model physics, then these bosonic clouds give rise to a number of potentially-observable signals. Among the most promising are monochromatic gravitational radiation signals which could be detected at Advanced LIGO and future gravitational wave observatories.


1996 ◽  
Vol 05 (06) ◽  
pp. 707-721 ◽  
Author(s):  
I. YA. AREF’EVA ◽  
I.V. VOLOVICH ◽  
K.S. VISWANATHAN

In a series of papers Amati, Ciafaloni and Veneziano and ’t Hooft conjectured that black holes occur in the collision of two light particles at planckian energies. In this talk based on [10] we discuss a possible scenario for such a process by using the Chandrasekhar-Ferrari-Xanthopoulos duality between the Kerr black hole solution and colliding plane gravitational waves.


1997 ◽  
Vol 56 (2) ◽  
pp. 785-797 ◽  
Author(s):  
Motoyuki Saijo ◽  
Hisa-aki Shinkai ◽  
Kei-ichi Maeda

2010 ◽  
Vol 6 (S274) ◽  
pp. 246-248
Author(s):  
N. Globus ◽  
C. Sauty ◽  
V. Cayatte

AbstractAn ideal engine for producing ultrarelativistic jets is a rapidly rotating black hole threaded by a magnetic field. Following the 3+1 decomposion of spacetime of Thorne et al. (1986), we use a local inertial frame of reference attached to an observer comoving with the frame-dragging of the Kerr black hole (ZAMO) to write the GRMHD equations. Assuming θ-self similarity, analytical solutions for jets can be found for which the streamline shape is calculated exactly. Calculating the total energy variation between a non polar streamline and the polar axis, we have extended to the Kerr metric the simple criterion for the magnetic collimation of jets developed by Sauty et al. (1999). We show that the black hole rotation induces a more efficient magnetic collimation of the jet.


2020 ◽  
Vol 496 (1) ◽  
pp. 497-503 ◽  
Author(s):  
Menglei Zhou ◽  
Askar B Abdikamalov ◽  
Dimitry Ayzenberg ◽  
Cosimo Bambi ◽  
Victoria Grinberg ◽  
...  

ABSTRACT The analysis of the thermal spectrum of geometrically thin and optically thick accretion discs of black holes, the so-called continuum-fitting method, is one of the leading techniques for measuring black hole spins. Current models normally approximate the disc as infinitesimally thin, while in reality the disc thickness is finite and increases as the black hole mass accretion rate increases. Here we present an XSPEC model to calculate the multitemperature blackbody spectrum of a thin accretion disc of finite thickness around a Kerr black hole. We test our new model with an RXTE observation of the black hole binary GRS 1915+105. We find that the spin value inferred with the new model is slightly higher than the spin value obtained with a model with an infinitesimally thin disc, but the difference is small and the effect is currently subdominant with respect to other sources of uncertainties in the final spin measurement.


1999 ◽  
Vol 183 ◽  
pp. 163-163
Author(s):  
Hideyuki Tagoshi ◽  
Shuhei Mano ◽  
Eiichi Takasugi

Coalescing compact binaries are the most promising candidates for detection by near-future, ground based laser interferometric detectors. It is very important to investigate detailed wave forms from coalescing compact binaries. When one (or two) of the stars is a black hole, some of those waves are absorbed by the black hole. Here, we consider a case when a test particle moves circular orbit on the equatorial plane around a Kerr black hole, and calculate the the energy absorption rate by the black hole. We adopt an analytic techniques for the Teukolsky equation which was found by Mano, Suzuki, and Takasugi (1996). We calculated the energy absorption rate to O((v/c)13) beyond the Newtonian-quadrupole formula of gravitational waves radiated to infinity, assuming v/c ≪ 1. Here v is the velocity of the particle. We find that, when a black hole is rotating, the black hole absorption appear at O((v/c)5) beyond the Newtonian-quadrapole formula. These effects become more important as the mass of the black hole becomes larger. We also found that the black hole absorption is more important when a particle moves to the same direction of the black hole rotation. All the details of this paper is presented in Tagoshi et al. (1997).


2020 ◽  
Author(s):  
Deep Bhattacharjee

This paper is totally based on the mathematical physics of the Black holes. In Einstein’s theory of “General Relativity”, Schwarzschild solution is the vacuum solutions of the Einstein Field Equations that describes the gravity potential from outside the body of a spherically symmetric object having zero charge, zero mass and zero cosmological constant[1]. It was discovered by Karl Schwarzschild in 1916, a little more than a month after the publication of the famous GR and the singularity is a point singularity which can be best described as a coordinate singularity rather than a real singularity, however, the drawback of this theory is that it fails to take into account the real life scenario of black holes with charge and spin angular momentum. The black hole is based on event horizon and Schwarzschild radius. However, Physicists were trying to develop a metric for the real life scenario of a black hole with a spin angular momen-tum and ultimately the exact solution of a charged rotating black hole had been discovered by Roy Kerr in 1965 as the Kerr-Newman metric[2][3]. The Kerr metric is one of the toughest metric in physics and is the extensional generalization to a rotating body of the Schwarzschild metric. The metric describes the vacuum geometry of space-time around a rotating axially-symmetric black hole with a quasipotential event horizon. In Kerr metric there are two event hori-zons (inner and outer), two ergospheres and an ergosurface. The most important effect of the Kerr metric is the frame dragging (also known as Lense-Thirring Precession) is a distinctive prediction of General relativity. The first direct observation of the collision of two Kerr Black Holes has been discovered by LIGO in 2016 hence setting up a milestone of General Relativity in the history of Physics. Here, the Kerr metric has been introduced in the Boyer-Lindquist forms and it is derived from the Schwarzschild metric using the Spin-Coefficient formalism. According to the “Cosmic Censorship Hypothesis”, a naked singularity cannot exist in nature as nature always hides the singularity via an event horizon. However, in this paper I will prove the existence of the “Naked Singularity" taking the advantage of the Ring Singularity of the Kerr Black Hole and thereby making the way to manipulate the mathematics by taking the larger root of Δ as zero and thereby vanishing the ergosphere and event horizon making the way for the naked ring singularity which can be easily connected via a cylindrical wormhole and as ‘a wormhole is a black hole without an event horizon’ therefore, this cylindrical connection paved the way for the Einstein-Rosen Bridge allowing particles or null rays to travel from one universe to another ending up in a future directed Cauchy horizon while changing constantly from spatial to temporal and again spatial paving the entrance to another Kerr Black hole (which would act as a white hole) in the other universes. I will not go in detail about the contradiction of ‘Chronology Protection Conjecture” [4]whether the Stress-Energy-Momentum Tensor can violate the ANEC (Average Null Energy Conditions) or not with the values of less than zero or greater than, equal to zero, instead I will focus definitely on the creation of the mathematical formulation of a wormhole from a Naked Ring Kerr Singularity of a Kerr Black Hole without any event horizon or ergosphere. Another important thing to mention in this paper is that I have taken the time to be imaginary[5] as because, a singularity being an eternal point of time can only be smoothen out if the time is imaginary rather than real which will allow the particle or null rays inside a wormhole to cross the singularity and making entrance to the other universe. The final conclusion would be to determine the mass-energy equivalence principle as spin angular momentum increases with a decrease in BH mass due to the vanishing event horizon and ergosphere thereby maintaining the equivalence via apparent and absolute masses in relation to spin J along the orthogonal Z axis. A ‘NAKED SINGULARITY’ alters every parameters of a BH and to include this parameters along with affine spin coefficient, it has been proved that without any spin angular momentum the generation of wormhole and vanishing of event horizon and singularity is not possible.


1998 ◽  
Vol 58 (6) ◽  
Author(s):  
Motoyuki Saijo ◽  
Kei-ichi Maeda ◽  
Masaru Shibata ◽  
Yasushi Mino

2018 ◽  
Vol 612 ◽  
pp. A63 ◽  
Author(s):  
L. Chantry ◽  
V. Cayatte ◽  
C. Sauty ◽  
N. Vlahakis ◽  
K. Tsinganos

Context. High-resolution radio imaging of active galactic nuclei (AGN) has revealed that the jets of some sources present superluminal knots and transverse stratification. Recent observational projects, such as ALMA and γ-ray telescopes, such as HESS and HESS2 have provided new observational constraints on the central regions of rotating black holes in AGN, suggesting that there is an inner- or spine-jet surrounded by a disk wind. This relativistic spine-jet is likely to be composed of electron-positron pairs extracting energy from the black hole and will be explored by the future γ-ray telescope CTA. Aims. In this article we present an extension to and generalization of relativistic jets in Kerr metric of the Newtonian meridional self-similar mechanism. We aim at modeling the inner spine-jet of AGN as a relativistic light outflow emerging from a spherical corona surrounding a Kerr black hole and its inner accretion disk. Methods. The model is built by expanding the metric and the forces with colatitude to first order in the magnetic flux function. As a result of the expansion, all colatitudinal variations of the physical quantities are quantified by a unique parameter. Unlike previous models, effects of the light cylinder are not neglected. Results. Solutions with high Lorentz factors are obtained and provide spine-jet models up to the polar axis. As in previous publications, we calculate the magnetic collimation efficiency parameter, which measures the variation of the available energy across the field lines. This collimation efficiency is an integral part of the model, generalizing the classical magnetic rotator efficiency criterion to Kerr metric. We study the variation of the magnetic efficiency and acceleration with the spin of the black hole and show their high sensitivity to this integral. Conclusions. These new solutions model collimated or radial, relativistic or ultra-relativistic outflows in AGN or γ-ray bursts. In particular, we discuss the relevance of our solutions to modeling the M 87 spine-jet. We study the efficiency of the central black hole spin to collimate a spine-jet and show that the jet power is of the same order as that determined by numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document