scholarly journals Small-Scale Fluctuations and Anisotropies in the 1–3 keV X-Ray Background

1990 ◽  
Vol 139 ◽  
pp. 408-409
Author(s):  
X. Barcons ◽  
A. C. Fabian

The spatial distribution of the 1–3 keV X-ray background (XRB) in five Einstein Observatory Imaging Proportional Counter fields has been analyzed. The autocorrelation function does not exceed 9% on scales ~5′. The observed count probability distribution is then used to check the source number-flux distribution at faint levels. Agreement with the Einstein Observatory deep survey is obtained. A cutoff in the number-flux distribution for a Euclidean population of sources at a flux approximately one-half of the deep survey limit, previously suggested by Hamilton and Helfand (1987), is also inferred.

Results from the Ariel 5 sky survey instrument relating to the properties and the spatial distribution of extragalactic X-ray sources are discussed. The lg N -lg S relation for sources in the 2A catalogue is consistent with a uniform distribution of sources in Euclidean space. In addition, measure­ments of fluctuations in the X-ray background suggest that the Euclidean form of the source counts can be extrapolated to flux levels at least an order of magnitude fainter than the 2A catalogue limit. Information is also available from the optical identification of 2A sources which, through redshift measurements, enables the X-ray luminosity functions of the two main classes of source, namely clusters of galaxies and active galaxies, to be determined. The luminosity functions can be used to calculate the contribution of clusters of galaxies and active galaxies to the diffuse X-ray background in the 2-10 keV range. It is found that cosmological evolution of one or both populations is required to account for the diffuse X-ray background entirely in terms of the integrated emission from these sources.


1983 ◽  
Vol 104 ◽  
pp. 7-18
Author(s):  
T. Maccacaro ◽  
I. M. Gioia

The imaging and spectroscopic instruments onboard the Einstein Observatory (Giacconi et al. 1979) have been extensively used to study in detail the X-ray properties of a large variety of astronomical objects. In this paper we will briefly discuss some of the most relevant results on extragalactic astronomy obtained mainly with the Imaging Proportional Counter (IPC).


1973 ◽  
Vol 182 ◽  
pp. 405 ◽  
Author(s):  
A. Cavaliere ◽  
A. Friedland ◽  
H. Gursky ◽  
G. Spada
Keyword(s):  
X Ray ◽  

1982 ◽  
Vol 70 ◽  
pp. 115-116
Author(s):  
David A. Allen

AbstractObservations are reported of 19 symbiotic stars made with the imaging proportional counter of the Einstein Observatory. Three of the objects (HM Sge, V 1016 Cyg and RR Tel) were detected as soft X-ray sources. All three have shown slow-nova eruptions in the past 40 years. The data are interpreted as support of a model for slow novae involving thermonuclear events on white dwarfs which accrete from M giant companions. Symbiotic stars in their steady state, not being detected X-ray sources, are presumed to be powered by the accretion process alone.


1998 ◽  
Vol 188 ◽  
pp. 471-472
Author(s):  
K. Ohta ◽  
M. Akiyama ◽  
K. Nakanishi ◽  
T. Yamada ◽  
K. Hayashida ◽  
...  

Since the bulk of the energy density of the Cosmic X-ray Background (CXB) resides in the harder energy band than that of the ROSAT band (0.5-2 keV) and since the X-ray sources identified in the ROSAT band have X-ray spectra softer than that of the CXB, investigation of nature of the X-ray sources at the harder energy band is indispensable to solve the origin of the CXB. However, only 2-3% of the CXB in the hard band (2-10 keV) had been resolved into discrete sources (Piccinotti et al. 1982, ApJ 253, 485). We present our preliminary results of optical follow-up observations of the ASCA Lynx deep survey.


1994 ◽  
Vol 143 ◽  
pp. 159-171
Author(s):  
Ester Antonucci

The coronal features observed in X-ray emission, varying from the small-scale, short-lived bright points to the large-scale, long-lived coronal holes, are closely associated with the coronal magnetic field and its topology, and their variability depends strongly on the solar cycle. Here we discuss the spatial distribution of the coronal structures, the frequency distribution of the brightness variations in active regions, and the role of magnetic reconnection in determining the variability of the coronal features, on the basis of the new observations of the soft X-ray emission recently obtained with the Yohkoh satellite and the NIXT experiment.


1997 ◽  
Vol 166 ◽  
pp. 321-324
Author(s):  
R. Warwick ◽  
I. Hutchinson ◽  
R. Willingale ◽  
K. Kuntz ◽  
S. Snowden

AbstractAn overlapping set of ROSAT PSPC observations made in a region of very low Galactic foreground column density, has been used to investigate variations in the soft X-ray background on angular scales of 15′ – 5°. In the ¼ keV band there is a clear inverse correlation of the count-rate with the line-of-sight hydrogen column density. However, after correcting for this absorption effect, strong residual fluctuations remain in the data, with an amplitude which is significantly larger than that due to the counting statistics or the confusion of unresolved discrete sources. In contrast a similar analysis for the ¾ and 1.5 keV ROSAT bands shows no evidence for an excess signal. The most likely origin of the ¼ keV fluctuations would seem to be in a patchy distribution of ~ 106 K gas in the Galactic halo.


1981 ◽  
Vol 94 ◽  
pp. 273-274
Author(s):  
Ajit Kembhavi ◽  
A. C. Fabian

Recent observations by the Einstein Observatory have shown that a majority of known quasars are powerful X-ray emitters. The 107 objects observed as of Feb. 1980 (Zamorani et al. 1980) have X-ray, optical and radio luminosities scattered over a wide range. Until a large enough X-ray selected sample of quasars becomes available, it is necessary to study statistical correlations in the available sample, so that some insight into X-ray production may be obtained, and the contribution of quasars to the X-ray background estimated.


Sign in / Sign up

Export Citation Format

Share Document