XXIII.—On Systems of Solutions of Homogeneous and Central Equations of the nth Degree and of two or more Variables; with a Discussion of the Loci of such Equations
The purpose of the present paper is to ascertain how far it is possible to find exact solutions or values of x, y, &c., in equations between variables, so that the forms of plane curves and contour-lines of surfaces may be exactly determined. No approximate methods have been admitted, and only those methods have been used which are applicable to algebraic equations of every degree and any number of variables. In the examples given I have generally selected equations of even degree and even powers of the variables. But every such solution evidently includes the solution of the non-central equation of half the degree having corresponding terms and equal coefficients. The methods of solution employed are founded on the following introductory theorem or principle, which may be described as that of Homogeneous or Linear Variation of the quantities.