scholarly journals VII.—On the Mechanical Energies of the Solar System

1857 ◽  
Vol 21 (1) ◽  
pp. 63-80 ◽  
Author(s):  
William Thomson

The mutual actions and motions of the heavenly bodies have long been regarded as the grandest phenomena of mechanical energy in nature. Their light has been seen, and their heat has been felt, without the slightest suspicion that we had thus a direct perception of mechanical energy at all. Even after it has been shewn that the almost inconceivably minute fraction of the Sun's heat and light reaching the earth is the source of energy from which all the mechanical actions of organic life, and nearly every motion of inorganic nature at its surface, are derived, the energy of this source has been scarcely thought of as a development of mechanical power.

1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


1962 ◽  
Vol 14 ◽  
pp. 133-148 ◽  
Author(s):  
Harold C. Urey

During the last 10 years, the writer has presented evidence indicating that the Moon was captured by the Earth and that the large collisions with its surface occurred within a surprisingly short period of time. These observations have been a continuous preoccupation during the past years and some explanation that seemed physically possible and reasonably probable has been sought.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sune G. Nielsen ◽  
David V. Bekaert ◽  
Maureen Auro

AbstractIsotopic measurements of lunar and terrestrial rocks have revealed that, unlike any other body in the solar system, the Moon is indistinguishable from the Earth for nearly every isotopic system. This observation, however, contradicts predictions by the standard model for the origin of the Moon, the canonical giant impact. Here we show that the vanadium isotopic composition of the Moon is offset from that of the bulk silicate Earth by 0.18 ± 0.04 parts per thousand towards the chondritic value. This offset most likely results from isotope fractionation on proto-Earth during the main stage of terrestrial core formation (pre-giant impact), followed by a canonical giant impact where ~80% of the Moon originates from the impactor of chondritic composition. Our data refute the possibility of post-giant impact equilibration between the Earth and Moon, and implies that the impactor and proto-Earth mainly accreted from a common isotopic reservoir in the inner solar system.


2004 ◽  
Vol 12 (1) ◽  
pp. 111-119
Author(s):  
SIEGFRIED J. BAUER

Planet Earth is unique in our solar system as an abode of life. In contrast to its planetary neighbours, the presence of liquid water, a benign atmospheric environment, a solid surface and an internal structure providing a protective magnetic field make it a suitable habitat for man. While natural forces have shaped the Earth over millennia, man through his technological prowess may become a threat to this oasis of life in the solar system.


2021 ◽  
Author(s):  
Cédric Gillmann ◽  
Gregor Golabek ◽  
Sean Raymond ◽  
Paul Tackley ◽  
Maria Schonbachler ◽  
...  

<p>Terrestrial planets in the Solar system generally lack surface liquid water. Earth is at odd with this observation and with the idea of the giant Moon-forming impact that should have vaporized any pre-existing water, leaving behind a dry Earth. Given the evidence available, this means that either water was brought back later or the giant impact could not vaporize all the water.</p><p>We have looked at Venus for answers. Indeed, it is an example of an active planet that may have followed a radically different evolutionary pathway despite the similar mechanisms at work and probably comparable initial conditions. However, due to the lack of present-day plate tectonics, volatile recycling, and any surface liquid oceans, the evolution of Venus has likely been more straightforward than that of the Earth, making it easier to understand and model over its long term evolution.</p><p>Here, we investigate the long-term evolution of Venus using self-consistent numerical models of global thermochemical mantle convection coupled with both an atmospheric evolution model and a late accretion N-body delivery model. We test implications of wet and dry late accretion compositions, using present-day Venus atmosphere measurements. Atmospheric losses are only able to remove a limited amount of water over the history of the planet. We show that late accretion of wet material exceeds this sink. CO<sub>2</sub> and N<sub>2</sub> contributions serve as additional constraints.</p><p>Water-rich asteroids colliding with Venus and releasing their water as vapor cannot explain the composition of Venus atmosphere as we measure it today. It means that the asteroidal material that came to Venus, and thus to Earth, after the giant impact must have been dry (enstatite chondrites), therefore preventing the replenishment of the Earth in water. Because water can obviously be found on our planet today, it means that the water we are now enjoying on Earth has been there since its formation, likely buried deep in the Earth so it could survive the giant impact. This in turn suggests that suggests that planets likely formed with their near-full budget in water, and slowly lost it with time.</p>


1999 ◽  
Vol 117 (5) ◽  
pp. 2561-2562 ◽  
Author(s):  
F. Namouni ◽  
C. D. Murray

2019 ◽  
Vol 64 (8) ◽  
pp. 762-776
Author(s):  
E. M. Galimov

This article discusses some features of geochemistry of the Earth and the Moon, which manifests the specificity of the mechanism of their formation by fragmentation of protoplanetary gas-dust condensation (Galimov & Krivtsov, 2012). The principal difference between this model and other hypotheses of the Earth-Moon system formation, including the megaimpact hypothesis, is that it assumes the existence of a long stage of the dispersed state of matter, starting with the formation of protoplanetary gas-dust condensation, its compression and fragmentation and ending with the final accretion to the formed high-temperature embryos of the Earth and the Moon. The presence of the dispersed state allows a certain way to interpret the observed properties of the Earth-Moon system. Partial evaporation of solid particles due to adiabatic heating of the compressing condensation leads to the loss of volatiles including FeO. Computer simulations show that the final accretion is mainly performed on a larger fragment (the Earth’s embryo) and only slightly increases the mass of the smaller fragment (the Moon embryo).This explains the relative depletion of the Moon in iron and volatile and the increased concentration of refractory components compared to the Earth. The reversible nature of evaporation into the dispersed space, in contrast to the kinetic regime, and the removal of volatiles in the hydrodynamic flow beyond the gas-dust condensation determines the loss of volatiles without the effect of isotopes fractionation. The reversible nature of volatile evaporation also provides, in contrast to the kinetic regime, the preservation of part of the high-volatile components, such as water, in the planetary body, including the Moon. It follows from the essence of the model that at least a significant part of the Earth’s core is formed not by segregation of iron in the silicate-metal melt, but by evaporation and reduction of FeO in a dispersed medium, followed by deposition of clusters of elemental iron to the center of mass. This mechanism of formation of the core explains the observed excess of siderophilic elements in the Earth’s mantle. It also provides a plausible explanation for the observed character of iron isotopes fractionation (in terms of δ57Fe‰) on Earth and on the Moon. It solves the problem of the formation of iron core from initially oxide (FeO) form. The dispersed state of the substance during the period of accretion suggests that the loss of volatiles occurred during the time of accretion. Using the fact that isotopic systems: U–Pb, Rb–Sr, 129J–129Xe, 244Pu–136Xe, contain volatile components, it is possible to estimate the chronology of events in the evolution of the protoplanetary state. As a result, agreed estimates of the time of fragmentation of the primary protoplanetary condensation and formation of the embryos of the Earth and the Moon are obtained: from 10 to 40 million years, and the time of completion of the earth’s accretion and its birth as a planetary body: 110 – 130 million years after the emergence of the solar system. The presented interpretation is consistent with the fact that solid minerals on the Moon have already appeared at least 60 million years after the birth of the solar system (Barboni et al., 2017), and the metal core in the Earth and in the Moon could not have formed before 50 million years from the start of the solar system, as follows from the analysis of the Hf-W system (Kleine et al., 2009). It is shown that the hypothesis of megaimpact does not satisfy many constraints and does not create a basis for the explanation of the geochemistry of the Earth and the Moon.


2019 ◽  
Vol 2 (1) ◽  
pp. 27-35
Author(s):  
Anisa Nur Afida ◽  
Yuberti Yuberti ◽  
Mukarramah Mustari

Abstract: This study aims to determine the function of the sun in the perspective of science and al-Qur'an . The research method used is qualitative research methods with the type of research library (Library Research). This research applies data analysis technique of Milles and Huberman model, with steps: 1) data reduction; 2) data display; 3) verification. The result of this research is, the theories that science explain related to the function of the sun in accordance with what is also described in the Qur'an. Science explains that the sun as the greatest source of light for the earth can produce its own energy. This is explained in the Qur'an that the sun is described as siraj and dhiya' which means sunlight is sourced from itself, as the center of the solar system is not static but also moves this matter in the Qur'an explained in QS Yāsin verse 38, besides science and the Qur'an also equally explain that the sun can be made as a calculation of time.Abstrak: Penelitian ini bertujuan untuk mengetahui fungsi matahari dalam perspektif sains dan al-Qur’an..Metode penelitian yang digunakan yaitu metode penelitian kualitatif dengan jenis penelitian pustaka (Library Research). Penelitian ini menggunakan teknik analisis data model Milles dan Huberman, dengan langkah-langkah: 1) reduksi data; 2) display data; 3) verifikasi. Hasil dari penelitian ini yaitu, teori-teori yang sains jelaskan berkaitan dengan fungsi matahari sesuai dengan apa yang juga di jelaskan dalam al-Qur’an. Sains menjelaskan bahwa matahari sebagai sumber energi cahaya terbesar bagi bumi dapat menghasilkan energinya sendiri hal ini dijelaskan dalam al-Qur’an bahwa matahari dideskripsikan sebagai siraj dan dhiya’yang berarti sinar matahari bersumber dari dirinya sendiri, sebagai pusat tata surya matahari tidaklah statis melainkan juga bergerak hal ini dalam al-Qur’an di jelaskan dalam QS Yāsin ayat 38, selain itu sains dan al-Qur’an juga sama-sama menjelaskan bahwa matahari  dapat di jadikan sebagai perhitungan waktu serta petunjuk dari bayang-bayang.


Sign in / Sign up

Export Citation Format

Share Document