scholarly journals How tight is the link between lexical processing and saccade programs?

2003 ◽  
Vol 26 (4) ◽  
pp. 491-492 ◽  
Author(s):  
Reinhold Kliegl ◽  
Ralf Engbert

We question the assumption of serial attention shifts and the assumption that saccade programs are initiated or canceled only after stage one of word identification. Evidence: (1) Fixation durations prior to skipped words are not consistently higher compared to those prior to nonskipped words. (2) Attentional modulation of microsaccade rate might occur after early visual processing. Saccades are probably triggered by attentional selection.

2021 ◽  
Author(s):  
Mara De Rosa ◽  
Davide Crepaldi

Research on visual word identification has extensively investigated the role of morphemes, recurrent letter chunks that convey a fairly regular meaning (e.g.,lead-er-ship). Masked priming studies highlighted morpheme identification in complex (e.g., sing-er) and pseudo-complex (corn-er) words, as well as in nonwords (e.g., basket-y). The present study investigated whether such sensitivity to morphemes could be rooted in the visual system sensitivity to statistics of letter (co)occurrence. To this aim, we assessed masked priming as induced by nonword primes obtained by combining a stem (e.g.,bulb) with (i) naturally frequent, derivational suffixes (e.g.,-ment), (ii) non-morphological, equally frequent word endings (e.g.,-idge), and (iii) non-morphological, infrequent word endings (e.g.,-kle). In two additional tasks, we collected interpretability and word-likeness measures for morphologically-structured nonwords, to assess whether priming is modulated by such factors. Results indicate that masked priming is not affected by either the frequency or the morphological status of word endings. Our findings are in line with models of early visual processing based on automatic stem/word extraction, and rule out letter chunk frequency as a main player in the early stages of visual word identification. Nonword interpretability and word-likeness do not affect this pattern.


2018 ◽  
Vol 71 (1) ◽  
pp. 140-151 ◽  
Author(s):  
Lili Yu ◽  
Qiaoming Zhang ◽  
Caspian Priest ◽  
Erik D Reichle ◽  
Heather Sheridan

Three eye-movement experiments were conducted to examine how the complexity of characters in Chinese words (i.e., number of strokes per character) influences their processing and eye-movement behaviour. In Experiment 1, English speakers with no significant knowledge of Chinese searched for specific low-, medium-, and high-complexity target characters in a multi-page narrative containing characters of varying complexity (3–16 strokes). Fixation durations and skipping rates were influenced by the visual complexity of both the target characters and the characters being searched even though participants had no knowledge of Chinese. In Experiment 2, native Chinese speakers performed the same character-search task, and a similar pattern of results was observed. Finally, in Experiment 3, a second sample of native Chinese speakers read the same text used in Experiments 1 and 2, with text characters again exhibiting complexity effects. These results collectively suggest that character-complexity effects on eye movements may not be due to lexical processing per se but may instead reflect whatever visual processing is required to know whether or not a character corresponds to an episodically represented target. The theoretical implications of this for our understanding of normal reading are discussed.


Author(s):  
Mara De Rosa ◽  
Davide Crepaldi

AbstractResearch on visual word identification has extensively investigated the role of morphemes, recurrent letter chunks that convey a fairly regular meaning (e.g., lead-er-ship). Masked priming studies highlighted morpheme identification in complex (e.g., sing-er) and pseudo-complex (corn-er) words, as well as in nonwords (e.g., basket-y). The present study investigated whether such sensitivity to morphemes could be rooted in the visual system sensitivity to statistics of letter (co)occurrence. To this aim, we assessed masked priming as induced by nonword primes obtained by combining a stem (e.g., bulb) with (i) naturally frequent, derivational suffixes (e.g., -ment), (ii) non-morphological, equally frequent word-endings (e.g., -idge), and (iii) non-morphological, infrequent word-endings (e.g., -kle). In two additional tasks, we collected interpretability and word-likeness measures for morphologically-structured nonwords, to assess whether priming is modulated by such factors. Results indicate that masked priming is not affected by either the frequency or the morphological status of word-endings, a pattern that was replicated in a second experiment including also lexical primes. Our findings are in line with models of early visual processing based on automatic stem/word extraction, and rule out letter chunk frequency as a main player in the early stages of visual word identification. Nonword interpretability and word-likeness do not affect this pattern.


The construction of directionally selective units, and their use in the processing of visual motion, are considered. The zero crossings of ∇ 2 G(x, y) ∗ I(x, y) are located, as in Marr & Hildreth (1980). That is, the image is filtered through centre-surround receptive fields, and the zero values in the output are found. In addition, the time derivative ∂[∇ 2 G(x, y) ∗ l(x, y) ]/∂ t is measured at the zero crossings, and serves to constrain the local direction of motion to within 180°. The direction of motion can be determined in a second stage, for example by combining the local constraints. The second part of the paper suggests a specific model of the information processing by the X and Y cells of the retina and lateral geniculate nucleus, and certain classes of cortical simple cells. A number of psychophysical and neurophysiological predictions are derived from the theory.


Neuron ◽  
2014 ◽  
Vol 82 (4) ◽  
pp. 887-895 ◽  
Author(s):  
John C. Tuthill ◽  
Aljoscha Nern ◽  
Gerald M. Rubin ◽  
Michael B. Reiser

2019 ◽  
Vol 72 (7) ◽  
pp. 1863-1875 ◽  
Author(s):  
Martin R Vasilev ◽  
Fabrice BR Parmentier ◽  
Bernhard Angele ◽  
Julie A Kirkby

Oddball studies have shown that sounds unexpectedly deviating from an otherwise repeated sequence capture attention away from the task at hand. While such distraction is typically regarded as potentially important in everyday life, previous work has so far not examined how deviant sounds affect performance on more complex daily tasks. In this study, we developed a new method to examine whether deviant sounds can disrupt reading performance by recording participants’ eye movements. Participants read single sentences in silence and while listening to task-irrelevant sounds. In the latter condition, a 50-ms sound was played contingent on the fixation of five target words in the sentence. On most occasions, the same tone was presented (standard sound), whereas on rare and unexpected occasions it was replaced by white noise (deviant sound). The deviant sound resulted in significantly longer fixation durations on the target words relative to the standard sound. A time-course analysis showed that the deviant sound began to affect fixation durations around 180 ms after fixation onset. Furthermore, deviance distraction was not modulated by the lexical frequency of target words. In summary, fixation durations on the target words were longer immediately after the presentation of the deviant sound, but there was no evidence that it interfered with the lexical processing of these words. The present results are in line with the recent proposition that deviant sounds yield a temporary motor suppression and suggest that deviant sounds likely inhibit the programming of the next saccade.


1997 ◽  
Vol 8 (2) ◽  
pp. 95-100 ◽  
Author(s):  
Kimron Shapiro ◽  
Jon Driver ◽  
Robert Ward ◽  
Robyn E. Sorensen

When people must detect several targets in a very rapid stream of successive visual events at the same location, detection of an initial target induces misses for subsequent targets within a brief period. This attentional blink may serve to prevent interruption of ongoing target processing by temporarily suppressing vision for subsequent stimuli. We examined the level at which the internal blink operates, specifically, whether it prevents early visual processing or prevents quite substantial processing from reaching awareness. Our data support the latter view. We observed priming from missed letter targets, benefiting detection of a subsequent target with the same identity but a different case. In a second study, we observed semantic priming from word targets that were missed during the blink. These results demonstrate that attentional gating within the blink operates only after substantial stimulus processing has already taken place. The results are discussed in terms of two forms of visual representation, namely, types and tokens.


The existence of multiple channels, or multiple receptive field sizes, in the visual system does not commit us to any particular theory of spatial encoding in vision. However, distortions of apparent spatial frequency and width in a wide variety of conditions favour the idea that each channel carries a width- or frequency-related code or ‘label’ rather than a ‘local sign’ or positional label. When distortions of spatial frequency occur without prior adaptation (e.g. at low contrast or low luminance) they are associated with lowered sensitivity, and may be due to a mismatch between the perceptual labels and the actual tuning of the channels. A low-level representation of retinal space could be constructed from the spatial information encoded by the channels, rather than being projected intact from the retina.


Sign in / Sign up

Export Citation Format

Share Document