Social affordances: Is the mirror neuron system involved?

2013 ◽  
Vol 36 (4) ◽  
pp. 417-418 ◽  
Author(s):  
Guillaume Dezecache ◽  
Laurence Conty ◽  
Julie Grèzes

AbstractWe question the idea that the mirror neuron system is the substrate of social affordances perception, and we suggest that most of the activity seen in the parietal and premotor cortex of the human brain is independent of mirroring activity as characterized in macaques, but rather reflects a process of one's own action specification in response to social signals.

2020 ◽  
Vol 66 (4) ◽  
pp. 30-40
Author(s):  
Marta Fabiańska ◽  
Mateusz Bosiacki ◽  
Donata Simińska

AbstractMirror neurons were accidentally discovered during research on the activity of nerve cells which was conducted by a team of Italian scientists in Parma. They observed that certain brain cells were activated when an animal performed a given activity but also when it observed a similar activity performed by someone else. The following discovery of mirror neurons in the human brain initiated a wave of experimental research which confirmed that mirror nerve cells are responsible for understanding the mental state of other humans. This process is much more complicated and important from an evolutionary point of view than it might initially seem. The activity of mirror neurons is noticeable in everyday life, during all interactions with other living beings. This is exhibited through mirroring – the reflection of emotional and epistemic mental states of others based on their behavior. We present the activities of mirror neurons and the theoretical framework of research. Finally, we discuss the results of neurological studies which have made it possible to locate and define in detail the role of the mirror neuron system in the human brain.


2016 ◽  
Author(s):  
Jie Yang

Background. Hand gestures play an important role in face-to-face communication. Although studies have shown that the mirror neuron system and the mentalizing system are involved in gesture comprehension, evidence of how the two systems are activated during gesture production is scattered and the conclusion is unclear. Methods. To address this issue, the current meta-analysis used activation likelihood estimation (ALE) method to quantitatively summarize the results of previous functional magnetic resonance imaging (fMRI) studies on communicative gesture production. Eight studies were selected based on several criteria (e.g., using fMRI technique, involving healthy adults, using gesture production tasks, conducting whole-brain analysis, and reporting activation foci in the MNI or Talairach space). ALE was conducted to calculate the overall brain effects for gesture production, and subsequently the brain effects for gesture execution, planning, and imitation. Results. The meta-analysis results showed that overall both systems (inferior parietal lobule and medial cortical structures) were involved in gesture production. Further analyses indicated that the mirror neuron system and the primary motor cortex were selectively involved in gesture execution, whereas the menalizing system and the premotor cortex were selectively involved in gesture planning. In gesture imitation, significant effects were found in both systems. Discussion. These results suggest that the mirror neuron system and the mentalizing system play different roles during gesture production. The former may be involved in the processes that require the mapping between observed actions and motor representations or the retrieval of motor representations; whereas the later may be involved when the production tasks require understanding others’ mental states.


2017 ◽  
Vol 28 (3) ◽  
pp. 1039-1048 ◽  
Author(s):  
Anat Perry ◽  
Jennifer Stiso ◽  
Edward F Chang ◽  
Jack J Lin ◽  
Josef Parvizi ◽  
...  

2016 ◽  
Author(s):  
Jie Yang

Background. Hand gestures play an important role in face-to-face communication. Although studies have shown that the mirror neuron system and the mentalizing system are involved in gesture comprehension, evidence of how the two systems are activated during gesture production is scattered and the conclusion is unclear. Methods. To address this issue, the current meta-analysis used activation likelihood estimation (ALE) method to quantitatively summarize the results of previous functional magnetic resonance imaging (fMRI) studies on communicative gesture production. Eight studies were selected based on several criteria (e.g., using fMRI technique, involving healthy adults, using gesture production tasks, conducting whole-brain analysis, and reporting activation foci in the MNI or Talairach space). ALE was conducted to calculate the overall brain effects for gesture production, and subsequently the brain effects for gesture execution, planning, and imitation. Results. The meta-analysis results showed that overall both systems (inferior parietal lobule and medial cortical structures) were involved in gesture production. Further analyses indicated that the mirror neuron system and the primary motor cortex were selectively involved in gesture execution, whereas the menalizing system and the premotor cortex were selectively involved in gesture planning. In gesture imitation, significant effects were found in both systems. Discussion. These results suggest that the mirror neuron system and the mentalizing system play different roles during gesture production. The former may be involved in the processes that require the mapping between observed actions and motor representations or the retrieval of motor representations; whereas the later may be involved when the production tasks require understanding others’ mental states.


2019 ◽  
Vol 30 (3) ◽  
pp. 1056-1067 ◽  
Author(s):  
James P Trujillo ◽  
Irina Simanova ◽  
Asli Özyürek ◽  
Harold Bekkering

Abstract Social interaction requires us to recognize subtle cues in behavior, such as kinematic differences in actions and gestures produced with different social intentions. Neuroscientific studies indicate that the putative mirror neuron system (pMNS) in the premotor cortex and mentalizing system (MS) in the medial prefrontal cortex support inferences about contextually unusual actions. However, little is known regarding the brain dynamics of these systems when viewing communicatively exaggerated kinematics. In an event-related functional magnetic resonance imaging experiment, 28 participants viewed stick-light videos of pantomime gestures, recorded in a previous study, which contained varying degrees of communicative exaggeration. Participants made either social or nonsocial classifications of the videos. Using participant responses and pantomime kinematics, we modeled the probability of each video being classified as communicative. Interregion connectivity and activity were modulated by kinematic exaggeration, depending on the task. In the Social Task, communicativeness of the gesture increased activation of several pMNS and MS regions and modulated top-down coupling from the MS to the pMNS, but engagement of the pMNS and MS was not found in the nonsocial task. Our results suggest that expectation violations can be a key cue for inferring communicative intention, extending previous findings from wholly unexpected actions to more subtle social signaling.


2011 ◽  
Vol 106 (1) ◽  
pp. 1-3 ◽  
Author(s):  
Yavor Yalachkov ◽  
Marcus J. Naumer

The study of Wagner et al. ( J Neurosci 31: 894–898, 2011) reveals the neural correlates of spontaneously activated action representations in smokers when subjects watch movie characters smoke. We stress the importance of differentiating how these representations are activated: while the anterior intraparietal sulcus and inferior frontal gyrus are part of the mirror neuron system of smokers, the middle frontal gyrus, premotor cortex, and superior parietal lobule represent the smoking-related tool use skills and action knowledge activated by smoking paraphernalia.


2021 ◽  
Author(s):  
Francesca Copelli ◽  
Joseph Rovetti ◽  
Paolo ammirante ◽  
Frank Russo

This study aims to clarify unresolved questions from two earlier studies (McGarry et al., 2012; Kaplan & Iacoboni, 2007) on human mirror neuron system (hMNS) responsivity to multimodal presentations of actions. These questions are: (1) whether the two frontal areas originally identified by Kaplan and Iacoboni (ventral premotor cortex [vPMC] and inferior frontal gyrus [IFG]) are both part of the hMNS (i.e., do they respond to execution as well as observation), (2) whether both areas yield effects of biologicalness (biological, control) and modality (audio, visual, audiovisual), and (3) whether the vPMC is preferentially responsive to multimodal input. To resolve these questions about the hMNS, we replicated and extended McGarry et al.’s electroencephalography (EEG) study, while incorporating advanced source localization methods. Participants were asked to execute movements (ripping paper) as well as observe those movements across the same three modalities (audio, visual, and audiovisual), all while 64-channel EEG data was recorded. Two frontal sources consistent with those identified in prior studies showed mu event-related desynchronization (mu-ERD) under execution and observation conditions. These sources also showed a greater response to biological movement than to control stimuli as well as a distinct visual advantage, with greater responsivity to visual and audiovisual compared to audio conditions. Exploratory analyses of mu-ERD in the vPMC under visual and audiovisual observation conditions suggests that the hMNS tracks the magnitude of visual movement over time.


2007 ◽  
Author(s):  
Raphael Bernier ◽  
Geraldine Dawson ◽  
Stanley Lunde

2008 ◽  
Vol 39 (01) ◽  
Author(s):  
N Alka ◽  
J Klann ◽  
M Staedtgen ◽  
IG Meister ◽  
W Huber

Sign in / Sign up

Export Citation Format

Share Document