scholarly journals Human mirror neuron system responsivity to unimodal and multimodal presentations of action

2021 ◽  
Author(s):  
Francesca Copelli ◽  
Joseph Rovetti ◽  
Paolo ammirante ◽  
Frank Russo

This study aims to clarify unresolved questions from two earlier studies (McGarry et al., 2012; Kaplan & Iacoboni, 2007) on human mirror neuron system (hMNS) responsivity to multimodal presentations of actions. These questions are: (1) whether the two frontal areas originally identified by Kaplan and Iacoboni (ventral premotor cortex [vPMC] and inferior frontal gyrus [IFG]) are both part of the hMNS (i.e., do they respond to execution as well as observation), (2) whether both areas yield effects of biologicalness (biological, control) and modality (audio, visual, audiovisual), and (3) whether the vPMC is preferentially responsive to multimodal input. To resolve these questions about the hMNS, we replicated and extended McGarry et al.’s electroencephalography (EEG) study, while incorporating advanced source localization methods. Participants were asked to execute movements (ripping paper) as well as observe those movements across the same three modalities (audio, visual, and audiovisual), all while 64-channel EEG data was recorded. Two frontal sources consistent with those identified in prior studies showed mu event-related desynchronization (mu-ERD) under execution and observation conditions. These sources also showed a greater response to biological movement than to control stimuli as well as a distinct visual advantage, with greater responsivity to visual and audiovisual compared to audio conditions. Exploratory analyses of mu-ERD in the vPMC under visual and audiovisual observation conditions suggests that the hMNS tracks the magnitude of visual movement over time.

2011 ◽  
Vol 106 (1) ◽  
pp. 1-3 ◽  
Author(s):  
Yavor Yalachkov ◽  
Marcus J. Naumer

The study of Wagner et al. ( J Neurosci 31: 894–898, 2011) reveals the neural correlates of spontaneously activated action representations in smokers when subjects watch movie characters smoke. We stress the importance of differentiating how these representations are activated: while the anterior intraparietal sulcus and inferior frontal gyrus are part of the mirror neuron system of smokers, the middle frontal gyrus, premotor cortex, and superior parietal lobule represent the smoking-related tool use skills and action knowledge activated by smoking paraphernalia.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Melody M. Y. Chan ◽  
Yvonne M. Y. Han

Abstract Background Impaired imitation has been found to be an important factor contributing to social communication deficits in individuals with autism spectrum disorder (ASD). It has been hypothesized that the neural correlate of imitation, the mirror neuron system (MNS), is dysfunctional in ASD, resulting in imitation impairment as one of the key behavioral manifestations in ASD. Previous MNS studies produced inconsistent results, leaving the debate of whether “broken” mirror neurons in ASD are unresolved. Methods This meta-analysis aimed to explore the differences in MNS activation patterns between typically developing (TD) and ASD individuals when they observe biological motions with or without social-emotional components. Effect size signed differential mapping (ES-SDM) was adopted to synthesize the available fMRI data. Results ES-SDM analysis revealed hyperactivation in the right inferior frontal gyrus and left supplementary motor area in ASD during observation of biological motions. Subgroup analysis of experiments involving the observation of stimuli with or without emotional component revealed hyperactivation in the left inferior parietal lobule and left supplementary motor during action observation without emotional components, whereas hyperactivation of the right inferior frontal gyrus was found during action observation with emotional components in ASD. Subgroup analyses of age showed hyperactivation of the bilateral inferior frontal gyrus in ASD adolescents, while hyperactivation in the right inferior frontal gyrus was noted in ASD adults. Meta-regression within ASD individuals indicated that the right cerebellum crus I activation increased with age, while the left inferior temporal gyrus activation decreased with age. Limitations This meta-analysis is limited in its generalization of the findings to individuals with ASD by the restricted age range, heterogeneous study sample, and the large within-group variation in MNS activation patterns during object observation. Furthermore, we only included action observation studies which might limit the generalization of our results to the imitation deficits in ASD. In addition, the relatively small sample size for individual studies might also potentially overestimate the effect sizes. Conclusion The MNS is impaired in ASD. The abnormal activation patterns were found to be modulated by the nature of stimuli and age, which might explain the contradictory results from earlier studies on the “broken mirror neuron” debate.


2016 ◽  
Author(s):  
Jie Yang

Background. Hand gestures play an important role in face-to-face communication. Although studies have shown that the mirror neuron system and the mentalizing system are involved in gesture comprehension, evidence of how the two systems are activated during gesture production is scattered and the conclusion is unclear. Methods. To address this issue, the current meta-analysis used activation likelihood estimation (ALE) method to quantitatively summarize the results of previous functional magnetic resonance imaging (fMRI) studies on communicative gesture production. Eight studies were selected based on several criteria (e.g., using fMRI technique, involving healthy adults, using gesture production tasks, conducting whole-brain analysis, and reporting activation foci in the MNI or Talairach space). ALE was conducted to calculate the overall brain effects for gesture production, and subsequently the brain effects for gesture execution, planning, and imitation. Results. The meta-analysis results showed that overall both systems (inferior parietal lobule and medial cortical structures) were involved in gesture production. Further analyses indicated that the mirror neuron system and the primary motor cortex were selectively involved in gesture execution, whereas the menalizing system and the premotor cortex were selectively involved in gesture planning. In gesture imitation, significant effects were found in both systems. Discussion. These results suggest that the mirror neuron system and the mentalizing system play different roles during gesture production. The former may be involved in the processes that require the mapping between observed actions and motor representations or the retrieval of motor representations; whereas the later may be involved when the production tasks require understanding others’ mental states.


2020 ◽  
Author(s):  
Melody M.Y. Chan ◽  
Yvonne M.Y. Han

Abstract Background Impaired imitation has been found to be an important factor contributing to social communication deficits in individuals with autism spectrum disorder (ASD). It has been hypothesized that the neural correlate of imitation, the mirror neuron system (MNS), is dysfunctional in ASD, resulting in imitation impairment as one of the key behavioral manifestations in ASD. Previous MNS studies produced inconsistent results, leaving the debate of whether mirror neurons are “broken” in ASD unresolved. Methods This meta-analysis aimed to explore the differences in MNS activation patterns between typically developing (TD) and ASD individuals when they observe biological motions with or without social-emotional components. Effect-size signed differential mapping (ES-SDM) was adopted to synthesize the available fMRI data. Results ES-SDM analysis revealed hyperactivation in the right inferior frontal gyrus and left supplementary motor area in ASD during observation of biological motions. Subgroup analysis of experiments involving the observation of stimuli with or without emotional component revealed hyperactivation in the left inferior parietal lobule and left supplementary motor during action observation without emotional components, whereas hyperactivation of right inferior frontal gyrus was found during action observation with emotional components in ASD. Subgroup analyses of age showed hyperactivation of bilateral inferior frontal gyrus in ASD adolescents, while hyperactivation in the right inferior frontal gyrus was noted in ASD adults. Meta-regression within ASD individuals indicated that right cerebellum crus I activation increased with age, while left inferior temporal gyrus activation decreased with age. Limitations This meta-analysis is limited in its generalization of the findings to individuals with ASD by the restricted age range, heterogeneous study sample, and the large within-group variation in MNS activation patterns during object observation. Furthermore, we only included action observation studies which might limit the generalization of our results to the imitation deficits in ASD. In addition, the relatively small sample size for individual studies might also potentially overestimate the effect sizes. Conclusion The MNS is impaired in ASD. The abnormal activation patterns were found to be modulated by the nature of stimuli and age, which might explain the contradictory results from earlier studies on the “broken mirror neuron” debate.


2005 ◽  
Vol 17 (2) ◽  
pp. 273-281 ◽  
Author(s):  
Marco Tettamanti ◽  
Giovanni Buccino ◽  
Maria Cristina Saccuman ◽  
Vittorio Gallese ◽  
Massimo Danna ◽  
...  

Observing actions made by others activates the cortical circuits responsible for the planning and execution of those same actions. This observation–execution matching system (mirror-neuron system) is thought to play an important role in the understanding of actions made by others. In an fMRI experiment, we tested whether this system also becomes active during the processing of action-related sentences. Participants listened to sentences describing actions performed with the mouth, the hand, or the leg. Abstract sentences of comparable syntactic structure were used as control stimuli. The results showed that listening to action-related sentences activates a left fronto-parieto-temporal network that includes the pars opercularis of the inferior frontal gyrus (Broca's area), those sectors of the premotor cortex where the actions described are motorically coded, as well as the inferior parietal lobule, the intraparietal sulcus, and the posterior middle temporal gyrus. These data provide the first direct evidence that listening to sentences that describe actions engages the visuomotor circuits which subserve action execution and observation.


2015 ◽  
Vol 26 (5) ◽  
pp. 2215-2224 ◽  
Author(s):  
Farsin Hamzei ◽  
Magnus-Sebastian Vry ◽  
Dorothee Saur ◽  
Volkmar Glauche ◽  
Markus Hoeren ◽  
...  

2016 ◽  
Author(s):  
Jie Yang

Background. Hand gestures play an important role in face-to-face communication. Although studies have shown that the mirror neuron system and the mentalizing system are involved in gesture comprehension, evidence of how the two systems are activated during gesture production is scattered and the conclusion is unclear. Methods. To address this issue, the current meta-analysis used activation likelihood estimation (ALE) method to quantitatively summarize the results of previous functional magnetic resonance imaging (fMRI) studies on communicative gesture production. Eight studies were selected based on several criteria (e.g., using fMRI technique, involving healthy adults, using gesture production tasks, conducting whole-brain analysis, and reporting activation foci in the MNI or Talairach space). ALE was conducted to calculate the overall brain effects for gesture production, and subsequently the brain effects for gesture execution, planning, and imitation. Results. The meta-analysis results showed that overall both systems (inferior parietal lobule and medial cortical structures) were involved in gesture production. Further analyses indicated that the mirror neuron system and the primary motor cortex were selectively involved in gesture execution, whereas the menalizing system and the premotor cortex were selectively involved in gesture planning. In gesture imitation, significant effects were found in both systems. Discussion. These results suggest that the mirror neuron system and the mentalizing system play different roles during gesture production. The former may be involved in the processes that require the mapping between observed actions and motor representations or the retrieval of motor representations; whereas the later may be involved when the production tasks require understanding others’ mental states.


2016 ◽  
Vol 28 (6) ◽  
pp. 775-791 ◽  
Author(s):  
Silvi Frenkel-Toledo ◽  
Dario G. Liebermann ◽  
Shlomo Bentin ◽  
Nachum Soroker

Stroke patients with ideomotor apraxia (IMA) have difficulties controlling voluntary motor actions, as clearly seen when asked to imitate simple gestures performed by the examiner. Despite extensive research, the neurophysiological mechanisms underlying failure to imitate gestures in IMA remain controversial. The aim of the current study was to explore the relationship between imitation failure in IMA and mirror neuron system (MNS) functioning. Mirror neurons were found to play a crucial role in movement imitation and in imitation-based motor learning. Their recruitment during movement observation and execution is signaled in EEG recordings by suppression of the lower (8–10 Hz) mu range. We examined the modulation of EEG in this range in stroke patients with left (n = 21) and right (n = 15) hemisphere damage during observation of video clips showing different manual movements. IMA severity was assessed by the DeRenzi standardized diagnostic test. Results showed that failure to imitate observed manual movements correlated with diminished mu suppression in patients with damage to the right inferior parietal lobule and in patients with damage to the right inferior frontal gyrus pars opercularis—areas where major components of the human MNS are assumed to reside. Voxel-based lesion symptom mapping revealed a significant impact on imitation capacity for the left inferior and superior parietal lobules and the left post central gyrus. Both left and right hemisphere damages were associated with imitation failure typical of IMA, yet a clear demonstration of relationship to the MNS was obtained only in the right hemisphere damage group. Suppression of the 8–10 Hz range was stronger in central compared with occipital sites, pointing to a dominant implication of mu rather than alpha rhythms. However, the suppression correlated with De Renzi's apraxia test scores not only in central but also in occipital sites, suggesting a multifactorial mechanism for IMA, with a possible impact for deranged visual attention (alpha suppression) beyond the effect of MNS damage (mu suppression).


2013 ◽  
Vol 36 (4) ◽  
pp. 417-418 ◽  
Author(s):  
Guillaume Dezecache ◽  
Laurence Conty ◽  
Julie Grèzes

AbstractWe question the idea that the mirror neuron system is the substrate of social affordances perception, and we suggest that most of the activity seen in the parietal and premotor cortex of the human brain is independent of mirroring activity as characterized in macaques, but rather reflects a process of one's own action specification in response to social signals.


2019 ◽  
Vol 30 (3) ◽  
pp. 1056-1067 ◽  
Author(s):  
James P Trujillo ◽  
Irina Simanova ◽  
Asli Özyürek ◽  
Harold Bekkering

Abstract Social interaction requires us to recognize subtle cues in behavior, such as kinematic differences in actions and gestures produced with different social intentions. Neuroscientific studies indicate that the putative mirror neuron system (pMNS) in the premotor cortex and mentalizing system (MS) in the medial prefrontal cortex support inferences about contextually unusual actions. However, little is known regarding the brain dynamics of these systems when viewing communicatively exaggerated kinematics. In an event-related functional magnetic resonance imaging experiment, 28 participants viewed stick-light videos of pantomime gestures, recorded in a previous study, which contained varying degrees of communicative exaggeration. Participants made either social or nonsocial classifications of the videos. Using participant responses and pantomime kinematics, we modeled the probability of each video being classified as communicative. Interregion connectivity and activity were modulated by kinematic exaggeration, depending on the task. In the Social Task, communicativeness of the gesture increased activation of several pMNS and MS regions and modulated top-down coupling from the MS to the pMNS, but engagement of the pMNS and MS was not found in the nonsocial task. Our results suggest that expectation violations can be a key cue for inferring communicative intention, extending previous findings from wholly unexpected actions to more subtle social signaling.


Sign in / Sign up

Export Citation Format

Share Document