A causal relationship between LTP and learning? Has the question been answered by genetic approaches?

1997 ◽  
Vol 20 (4) ◽  
pp. 617-618 ◽  
Author(s):  
Robert Gerlai

Gene targeting has generated a great deal of data on the molecular mechanisms of long-term potentiation and its potential role in learning and memory. However, the interpretation of some results has been questioned. Compensatory mechanisms and the contribution of genetic background may make it difficult to unequivocally prove the existence of a causal (genetic) link between LTP and learning.

The Neuron ◽  
2015 ◽  
pp. 489-528
Author(s):  
Irwin B. Levitan ◽  
Leonard K. Kaczmarek

Psychologists have described different kinds of learning and memory, and there is an ongoing search for the physical basis of these distinctions and for the cellular and molecular mechanisms responsible. Because of the complexity of most nervous systems, the search has focused to a large extent on animals with relatively simple nervous systems and on reduced preparations. Common themes have emerged, such as the requirement for signaling pathways linked to calcium and cyclic AMP, and the fact that pathways used in normal development continue to be used for plasticity in adults. At the same time, it is clear that there is an enormous diversity of cellular mechanisms that contribute to short-term and long-term phases of memory formation. These include long-term potentiation (LTP), long-term depression (LTD), spike-timing dependent plasticity, synaptic tagging, and synaptic scaling. Each type of synaptic connection has its own personality such that, in response to a particular pattern of stimulation, one synapse may increase its postsynaptic receptors while another may expand its presynaptic terminals.


1997 ◽  
Vol 20 (4) ◽  
pp. 622-623 ◽  
Author(s):  
Stephen Maren

Shors & Matzel provide compelling arguments against a role for hippocampal long-term potentiation (LTP) in mammalian learning and memory. As an alternative, they suggest that LTP is an arousal mechanism. I will argue that this view is not a satisfactory alternative to current conceptions of LTP function.


2001 ◽  
Vol 85 (1) ◽  
pp. 117-124 ◽  
Author(s):  
J.N.D. Kerr ◽  
J. R. Wickens

Dopamine and glutamate are key neurotransmitters involved in learning and memory mechanisms of the brain. These two neurotransmitter systems converge on nerve cells in the neostriatum. Dopamine modulation of activity-dependent plasticity at glutamatergic corticostriatal synapses has been proposed as a cellular mechanism for learning in the neostriatum. The present research investigated the role of specific subtypes of dopamine receptors in long-term potentiation (LTP) in the corticostriatal pathway, using intracellular recording from striatal neurons in a corticostriatal slice preparation. In agreement with previous reports, LTP could be induced reliably under Mg2+-free conditions. This Mg2+-free LTP was blocked by dopamine depletion and by the dopamine D-1/D-5 receptor antagonist SCH 23390 but was not blocked by the dopamine D-2 receptor antagonist remoxipride or the GABAA antagonist picrotoxin. In dopamine-depleted slices, the ability to induce LTP could be restored by bath application of the dopamine D-1/D-5 receptor agonist, SKF 38393. These results show that activation of dopamine D-1/D-5 receptors by either endogenous dopamine or exogenous dopamine agonists is a requirement for the induction of LTP in the corticostriatal pathway. These findings have significance for current understanding of learning and memory mechanisms of the neostriatum and for theoretical understanding of the mechanism of action of drugs used in the treatment of psychotic illnesses and Parkinson's disease.


2013 ◽  
Vol 33 (2) ◽  
pp. 203-213 ◽  
Author(s):  
G Han ◽  
L An ◽  
B Yang ◽  
L Si ◽  
T Zhang

The aim of the present study was to investigate whether cognitive behavioral impairment, induced by nicotine in offspring rats, was associated with the alteration of hippocampal short-term potentiation (STP) and long-term potentiation (LTP) and to discuss the potential underlying mechanism. Young adult offspring rats were randomly divided into three groups. The groups include: control group (CC), nicotine group 1 (NC), in which their mothers received nicotine from gestational day 3 (GD3) to GD18, and nicotine group 2 (CN), in which young adult offspring rats received nicotine from postnatal day 42 (PD42) to PD56. Morris water maze (MWM) test was performed and then field excitatory postsynaptic potentials elicited by the stimulation of perforant pathway were recorded in the hippocampal dentate gyrus region. The results of the MWM test showed that learning and memory were impaired by either prenatal or postnatal nicotine exposure. In addition, it was found that there was no statistical difference of the MWM data between both nicotine treatments. In the electrophysiological test, LTP and STP were significantly inhibited in both NC and CN groups in comparison with the CC group. Notably, STP in CN group was also lower than that in the NC group. These findings suggested that both prenatal and postnatal exposure to nicotine induced learning and memory deficits, while the potential mechanism might be different from each other due to their dissimilar impairments of synaptic plasticity.


2020 ◽  
pp. 83-95
Author(s):  
Gabriele M. Rune

Estradiol synthesis depends on the activity of aromatase, the enzyme that specifically and irreversibly converts testosterone to estradiol in steroidogenesis. Aromatase is expressed and is active in the hippocampus, a brain region related to learning and memory. Dynamics of spines and spine synapses, including expression of presynaptic and postsynaptic proteins, are controlled by hippocampus-derived estradiol in female rodents, but not in male rodents. This also holds true for long-term potentiation. Inhibition of aromatase, either pharmacologically or by genetic approaches, results in a decrease in synapse density and synaptic potentiation in female animals and in neonatal hippocampal cultures that originate from females. The consistency of the findings in rodents and in perinatal primary hippocampal cultures points to sex-specific differentiation processes during embryonic development, which underlie sex-dependent differences in neurosteroid action in the hippocampus.


2002 ◽  
Vol 87 (6) ◽  
pp. 3018-3032 ◽  
Author(s):  
Nikolai Otmakhov ◽  
John E. Lisman

The molecular mechanisms that underlie the maintenance of long-term potentiation (LTP) remain unclear. We have examined the influence of postsynaptic cAMP-dependent processes on LTP maintenance in CA1 hippocampal cells. After LTP induction, drugs affecting cAMP-dependent processes were perfused into the cell through a patch pipette. A cAMP analogue, Rp-cAMPS (4 mM), dramatically decreased the amplitude of potentiated synaptic responses. The amplitude of responses in the control pathway was also decreased but to a lesser extent, indicating a specific effect on the potentiation process. This specific effect was not due to the larger amplitude of potentiated responses, was not use-dependent and, unlike other factors that affect LTP maintenance, did not depend on the delay (2, 10, or 25 min) of drug application after LTP induction. Lower concentrations of Rp-cAMPS (1.0 and 0.4 mM) also produced an inhibitory effect but reduced the LTP and control pathways comparably. One possible action of Rp-cAMPS is competitive inhibition of protein kinase A (PKA). Surprisingly, a potent and noncompetitive PKA inhibitor, regulatory type II subunit of PKA, produced only a weak depression of potentiated and control responses indicating there must be other targets for Rp-cAMPS. Moreover, Sp-8-OH-cAMPS, which is an activator of PKA, and Rp-8-OH-cAMPS, which is a weak inhibitor of PKA, both produced effects similar to those of Rp-cAMPS. We conclude that there are postsynaptic cyclic nucleotide-dependent processes that can specifically alter the mechanisms that maintain LTP and that are not primarily dependent on PKA.


Sign in / Sign up

Export Citation Format

Share Document