scholarly journals Episodic memory, amnesia, and the hippocampal–anterior thalamic axis

1999 ◽  
Vol 22 (3) ◽  
pp. 425-444 ◽  
Author(s):  
John P. Aggleton ◽  
Malcolm W. Brown

By utilizing new information from both clinical and experimental (lesion, electrophysiological, and gene-activation) studies with animals, the anatomy underlying anterograde amnesia has been reformulated. The distinction between temporal lobe and diencephalic amnesia is of limited value in that a common feature of anterograde amnesia is damage to part of an “extended hippocampal system” comprising the hippocampus, the fornix, the mamillary bodies, and the anterior thalamic nuclei. This view, which can be traced back to Delay and Brion (1969), differs from other recent models in placing critical importance on the efferents from the hippocampus via the fornix to the diencephalon. These are necessary for the encoding and, hence, the effective subsequent recall of episodic memory. An additional feature of this hippocampal–anterior thalamic axis is the presence of projections back from the diencephalon to the temporal cortex and hippocampus that also support episodic memory. In contrast, this hippocampal system is not required for tests of item recognition that primarily tax familiarity judgements. Familiarity judgements reflect an independent process that depends on a distinct system involving the perirhinal cortex of the temporal lobe and the medial dorsal nucleus of the thalamus. In the large majority of amnesic cases both the hippocampal–anterior thalamic and the perirhinal–medial dorsal thalamic systems are compromised, leading to severe deficits in both recall and recognition.

1999 ◽  
Vol 22 (3) ◽  
pp. 471-479 ◽  
Author(s):  
John P. Aggleton ◽  
Malcolm W. Brown

The goal of our target article was to review a number of emerging facts about the effects of limbic damage on memory in humans and animals, and about divisions within recognition memory in humans. We then argued that this information can be synthesized to produce a new view of the substrates of episodic memory. The key pathway in this system is from the hippocampus to the anterior thalamic nuclei. There seems to be a general agreement that the importance of this pathway has previously been underestimated and that it warrants further study. At the same time, a number of key questions remain. These concern the relationship of this system to another temporal-lobe/diencephalic system that contributes to recognition, and the relationship of these systems to prefrontal cortex activity.


1999 ◽  
Vol 22 (3) ◽  
pp. 463-464
Author(s):  
Lynn Nadel ◽  
Lee Ryan ◽  
Katrina Keil ◽  
Karen Putnam

Aggleton & Brown rightly point out the shortcomings of the medial temporal lobe hypothesis as an approach to anterograde amnesia. Their broader perspective is a necessary corrective, and one hopes it will be taken very seriously. Although they correctly note the dangers of conflating recognition and recall, they themselves make a similar mistake in discussing familiarity; we suggest an alternative approach. We also discuss implications of their view for an analysis of retrograde amnesia. The notion that there are two routes by which the hippocampus can reactivate neuronal ensembles in the neocortex could help us understand some currently puzzling facts about the dynamics of memory consolidation.


1997 ◽  
Vol 9 (4) ◽  
pp. 512-521 ◽  
Author(s):  
Amanda Parker ◽  
David Gaffan

Six monkeys were trained preoperatively in an automated object-in-place memory task in which they learned 20 new scenes in each daily session. Three of the six monkeys then received stereotaxically guided bilateral mamillary body lesions, leaving the fornix intact, while the other three received a control operation. Postoperatively the control animals' rate of learning new scenes was unchanged, but the animals with mamillary body lesions showed a severe impairment, equal to that seen in previous experiments after fornix transection. All six animals were then given fornix transection, in addition to the existing mamillary or control operation. The control group now showed, after fornix transection, an impairment equal to that of the animals with mamillary body lesions alone. But the animals with mamillary body lesions did not show any additional impairment following fornix transection. We conclude that (1) the role of the mamillary bodies in a model of human episodic memory is as important as the role of the fornix, (2) the fornix and mamillary bodies form a single functional memory system, since the effect of lesions in both parts is no more severe than the effects of a lesion in one of the parts alone, and (3) the idea that the functional effects of fornix transection result from cholmergic deafferentation of the hippocampus receives no support from the present results; rather, they support the idea that in primates the fornix and mamillary bodies, together with connected structures, including the subiculum, mamillo-thalamic tract, anterior thalamic nuclei, and cingulate bundle, form a cortico-cortical association pathway for episodic memory.


2005 ◽  
Vol 187 (6) ◽  
pp. 500-509 ◽  
Author(s):  
Amélie M. Achim ◽  
Martin Lepage

BackgroundNumerous studies have examined the neural correlates of episodic memory deficits in schizophrenia, yielding both consistencies and discrepancies in the reported patterns of results.AimsTo identify in schizophrenia the brain regions in which activity is consistently abnormal across imaging studies of memory.MethodData from 18 studies meeting the inclusion criteria were combined using a recently developed quantitative meta-analytic approach.ResultsRegions of consistent differential activation between groups were observed in the left inferior prefrontal cortex, medial temporal cortex bilaterally, left cerebellum, and in other prefrontal and temporal lobe regions. Subsequent analyses explored memory encoding and retrieval separately and identified between-group differences in specific prefrontal and medial temporal lobe regions.ConclusionsBeneath the apparent heterogeneity of published findings on schizophrenia and memory, a consistent and robust pattern of group differences is observed as a function of memory processes.


2008 ◽  
Vol 61 (10) ◽  
pp. 1441-1471 ◽  
Author(s):  
John P. Aggleton

Three emerging strands of evidence are helping to resolve the causes of the anterograde amnesia associated with damage to the diencephalon. First, new anatomical studies have refined our understanding of the links between diencephalic and temporal brain regions associated with amnesia. These studies direct attention to the limited numbers of routes linking the two regions. Second, neuropsychological studies of patients with colloid cysts confirm the importance of at least one of these routes, the fornix, for episodic memory. By combining these anatomical and neuropsychological data strong evidence emerges for the view that damage to hippocampal—mammillary body—anterior thalamic interactions is sufficient to induce amnesia. A third development is the possibility that the retrosplenial cortex provides an integrating link in this functional system. Furthermore, recent evidence indicates that the retrosplenial cortex may suffer “covert” pathology (i.e., it is functionally lesioned) following damage to the anterior thalamic nuclei or hippocampus. This shared indirect “lesion” effect on the retrosplenial cortex not only broadens our concept of the neural basis of amnesia but may also help to explain the many similarities between temporal lobe and diencephalic amnesia.


2019 ◽  
Vol 120 (6) ◽  
pp. 1361-1370
Author(s):  
De-Feng Liu ◽  
Ying-Chuan Chen ◽  
Guan-Yu Zhu ◽  
Xiu Wang ◽  
Yin Jiang ◽  
...  

2009 ◽  
Vol 16 (1) ◽  
pp. 205-209 ◽  
Author(s):  
MARCIO L. F. BALTHAZAR ◽  
CLARISSA L. YASUDA ◽  
FERNANDO CENDES ◽  
BENITO P. DAMASCENO

AbstractPerformance of different episodic memory processes in patients with amnestic mild cognitive impairment (aMCI) and mild Alzheimer’s disease (AD) and their anatomical correlates are not completely understood. We evaluated the performance of 48 subjects (17 with aMCI, 15 with mild AD, and 16 controls) on the Rey Auditory Verbal Learning Test (RAVLT). A brain MRI voxel-based morphometry (VBM) analysis was run with the aim of evaluating the correlations between RAVLT and gray matter density. All memory processes were compromised in aMCI and mild AD. Also, the same cerebral structures were involved in all RAVLT stages. Learning and delayed recall were more related to the medial prefrontal cortex and hippocampi, whereas recognition was more related to the thalamic nuclei and caudate nucleus, particularly in the left side. Our findings suggest that these structures may act as a complex functional system and are involved in the acquisition of new information. (JINS, 2010, 16, 205–209.)


2020 ◽  
Author(s):  
Susan L. Benear ◽  
Elizabeth A. Horwath ◽  
Emily Cowan ◽  
M. Catalina Camacho ◽  
Chi Ngo ◽  
...  

The medial temporal lobe (MTL) undergoes critical developmental change throughout childhood, which aligns with developmental changes in episodic memory. We used representational similarity analysis to compare neural pattern similarity for children and adults in hippocampus and parahippocampal cortex during naturalistic viewing of clips from the same movie or different movies. Some movies were more familiar to participants than others. Neural pattern similarity was generally lower for clips from the same movie, indicating that related content taxes pattern separation-like processes. However, children showed this effect only for movies with which they were familiar, whereas adults showed the effect consistently. These data suggest that children need more exposures to stimuli in order to show mature pattern separation processes.


Sign in / Sign up

Export Citation Format

Share Document