Frontal eye field: A cortical salience map

1999 ◽  
Vol 22 (4) ◽  
pp. 699-700 ◽  
Author(s):  
Kirk G. Thompson ◽  
Narcisse P. Bichot

The concept of a salience map has become important for the development of theories of visual attention and saccade generation. Recent studies have shown that the frontal eye fields have all of the characteristics of a salience map.

1996 ◽  
Vol 75 (5) ◽  
pp. 2187-2191 ◽  
Author(s):  
H. Mushiake ◽  
N. Fujii ◽  
J. Tanji

1. We studied neuronal activity in the supplementary eye field (SEF) and frontal eye field (FEF) of a monkey during performance of a conditional motor task that required capturing of a target either with a saccadic eye movement (the saccade-only condition) or with an eye-hand reach (the saccade-and-reach condition), according to visual instructions. 2. Among 106 SEF neurons that showed presaccadic activity, more than one-half of them (54%) were active preferentially under the saccade-only condition (n = 12) or under the saccade-and-reach condition (n = 45), while the remaining 49 neurons were equally active in both conditions. 3. By contrast, most (97%) of the 109 neurons in the FEF exhibited approximately equal activity in relation to saccades under the two conditions. 4. The present results suggest the possibility that SEF neurons, at least in part, are involved in signaling whether the motor task is oculomotor or combined eye-arm movements, whereas FEF neurons are mostly related to oculomotor control.


1999 ◽  
Vol 22 (4) ◽  
pp. 688-689
Author(s):  
Wolfgang Heide ◽  
Andreas Sprenger ◽  
Detlef Kömpf

In this commentary we describe findings in normal human subjects and in patients with visual hemineglect that support the importance of higher-level influences on saccade generation during visual exploration. As the duration of fixations increases with increases in the cognitive demand of the task, the timing of exploratory saccades is controlled more by centers of cognitive and perceptual processing at levels 4 and 5 than by reflex-like automatic processes at level 3. In line with this, unilateral frontal eye field lesions impair systematic, intentional saccadic exploration of visual scenes, causing prolonged fixations and contralesional hemineglect, but leave visually triggered reflexive saccades largely intact.


2001 ◽  
Vol 86 (5) ◽  
pp. 2634-2637 ◽  
Author(s):  
Aditya Murthy ◽  
Kirk G. Thompson ◽  
Jeffrey D. Schall

Previous studies of visually responsive neurons in the frontal eye fields have identified a selection process preceding saccades during visual search. The goal of this experiment was to determine whether the selection process corresponds to the selection of a conspicuous stimulus or to preparation of the next saccade. This was accomplished with the use of a novel task, called search-step, in which the target of a singleton visual search array switches location with a distracter on random trials. The target step trials created a condition in which the same stimulus yielded saccades either toward or away from the target. Visually responsive neurons in frontal eye field selected the current location of the conspicuous target even when gaze shifted to the location of a distractor. This dissociation demonstrates that the selection process manifest in visual neurons in the frontal eye field may be an explicit interpretation of the image and not an obligatory saccade command.


Author(s):  
Qiong Wu ◽  
Chunlin Li ◽  
Satoshi Takahashi ◽  
Jinglong Wu

In recent years, there have been many studies on attention. These studies have found that there are two distinct kinds of neural networks employed for visual attention and tactile attention, respectively. This review summarizes the processing mechanism of these attention-related brain networks. One type is the top-down attention related brain structure, which includes the IPs/SPL (intraparietal sulcus/superior parietal lobule)-FEF (frontal eye field). The other is the bottom-up attention related brain structure, which includes the TPJ (temporoparietal junction)-VFC (ventral frontal cortex). Regarding research into tactile attention, in conclusion, the authors found that tactile attention had a similar neural network to that of visual attention in that there was top-down attention to the relevant IPs-FEF and bottom-up attention to the relevant TPJ-VFC.


2010 ◽  
Vol 104 (3) ◽  
pp. 1239-1248 ◽  
Author(s):  
Stan Van Pelt ◽  
Ivan Toni ◽  
Jörn Diedrichsen ◽  
W. Pieter Medendorp

The path from perception to action involves the transfer of information across various reference frames. Here we applied a functional magnetic resonance imaging (fMRI) repetition suppression paradigm to determine the reference frame(s) in which the cortical activity is coded at several phases of the sensorimotor transformation for a saccade, including sensory processing, saccade planning, and saccade execution. We distinguished between retinal (eye-centered) and nonretinal (e.g., head-centered) coding frames in three key regions: the intraparietal sulcus (IPS), frontal eye field (FEF), and supplementary eye field (SEF). Subjects ( n = 18) made delayed saccades to one of five possible peripheral targets, separated at intervals of 9° visual angle. Target locations were chosen pseudorandomly, based on a 2 × 2 factorial design, with factors retinal and nonretinal coordinates and levels novel and repeated. In all three regions, analysis of the blood oxygenation level dependent dynamics revealed an attenuation of the fMRI signal in trials repeating the location of the target in retinal coordinates. The amount of retinal suppression varied across the three phases of the trial, with the strongest suppression during saccade planning. The paradigm revealed only weak traces of nonretinal coding in these regions. Further analyses showed an orderly representation of the retinal target location, as expressed by a contralateral bias of activation, in the IPS and FEF, but not in the SEF. These results provide evidence that the sensorimotor processing in these centers reflects saccade generation in eye-centered coordinates, irrespective of their topographic organization.


2001 ◽  
Vol 85 (2) ◽  
pp. 804-815 ◽  
Author(s):  
Doug P. Hanes ◽  
Robert H. Wurtz

Both the frontal eye field (FEF) in the prefrontal cortex and the superior colliculus (SC) on the roof of the midbrain participate in the generation of rapid or saccadic eye movements and both have projections to the premotor circuits of the brain stem where saccades are ultimately generated. In the present experiments, we tested the contributions of the pathway from the FEF to the premotor circuitry in the brain stem that bypasses the SC. We assayed the contribution of the FEF to saccade generation by evoking saccades with direct electrical stimulation of the FEF. To test the role of the SC in conveying information to the brain stem, we inactivated the SC, thereby removing the circuit through the SC to the brain stem, and leaving only the direct FEF–brain stem pathway. If the contributions of the direct pathway were substantial, removal of the SC should have minimal effect on the FEF stimulation, whereas if the FEF stimulation were dependent on the SC, removal of the SC should alter the effect of FEF stimulation. By acutely inactivating the SC, instead of ablating it, we were able to test the efficiency of the direct FEF–brain stem pathway before substantial compensatory mechanisms could mask the effect of removing the SC. We found two striking effects of SC inactivation. In the first, we stimulated the FEF at a site that evoked saccades with vectors that were very close to those evoked at the site of the SC inactivation, and with such optimal alignment, we found that SC inactivation eliminated the saccades evoked by FEF stimulation. The second effect was evident when the FEF evoked saccades were disparate from those evoked in the SC, and in this case we observed a shift in the direction of the evoked saccade that was consistent with the SC inactivation removing a component of a vector average. Together these observations lead to the conclusion that in the nonablated monkey the direct FEF–brain stem pathway is not functionally sufficient to generate accurate saccades in the absence of the indirect pathway that courses from the FEF through the SC to the brain stem circuitry. We suggest that the recovery of function following SC ablation that has been seen in previous studies must result not from the use of an already functioning parallel pathway but from neural plasticity within the saccadic system.


2015 ◽  
Vol 74 ◽  
pp. 37-41 ◽  
Author(s):  
Dario Cazzoli ◽  
Simon Jung ◽  
Thomas Nyffeler ◽  
Tobias Nef ◽  
Pascal Wurtz ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ian Krajbich ◽  
Andres Mitsumasu ◽  
Rafael Polania ◽  
Christian C Ruff ◽  
Ernst Fehr

Recent studies have suggested close functional links between overt visual attention and decision making. This suggests that the corresponding mechanisms may interface in brain regions known to be crucial for guiding visual attention – such as the frontal eye field (FEF). Here, we combined brain stimulation, eye tracking, and computational approaches to explore this possibility. We show that inhibitory transcranial magnetic stimulation (TMS) over the right FEF has a causal impact on decision making, reducing the effect of gaze dwell time on choice while also increasing reaction times. We computationally characterize this putative mechanism by using the attentional drift diffusion model (aDDM), which reveals that FEF inhibition reduces the relative discounting of the non-fixated option in the comparison process. Our findings establish an important causal role of the right FEF in choice, elucidate the underlying mechanism, and provide support for one of the key causal hypotheses associated with the aDDM.


Sign in / Sign up

Export Citation Format

Share Document