scholarly journals Real analyticity of Hausdorff dimension for expanding rational semigroups

2009 ◽  
Vol 30 (2) ◽  
pp. 601-633 ◽  
Author(s):  
HIROKI SUMI ◽  
MARIUSZ URBAŃSKI

AbstractWe consider the dynamics of expanding semigroups generated by finitely many rational maps on the Riemann sphere. We show that for an analytic family of such semigroups, the Bowen parameter function is real-analytic and plurisubharmonic. Combining this with a result obtained by the first author, we show that if each semigroup of such an analytic family of expanding semigroups satisfies the open set condition, then the Hausdorff dimension of the Julia set is a real-analytic and plurisubharmonic function of the parameter. Moreover, we provide an extensive collection of examples of analytic families of semigroups satisfying all of the above conditions and we analyze in detail the corresponding Bowen’s parameters and Hausdorff dimension function.

2011 ◽  
Vol 21 (11) ◽  
pp. 3323-3339
Author(s):  
RIKA HAGIHARA ◽  
JANE HAWKINS

We study a family of rational maps of the Riemann sphere with the property that each map has two fixed points with multiplier -1; moreover, each map has no period 2 orbits. The family we analyze is Ra(z) = (z3 - z)/(-z2 + az + 1), where a varies over all nonzero complex numbers. We discuss many dynamical properties of Ra including bifurcations of critical orbit behavior as a varies, connectivity of the Julia set J(Ra), and we give estimates on the Hausdorff dimension of J(Ra).


1992 ◽  
Vol 12 (1) ◽  
pp. 39-52 ◽  
Author(s):  
L. Baribeau ◽  
T. J. Ransford

AbstractLet {RA} be an analytic family of rational maps and denote by j(λ) the Julia set of Rλ. We prove that the upper semicontinuous regularization j(λ) of j(λ) (which coincides with j(λ) for all λ in a dense open set) is a meromorphic multifunction, and give applications that illustrate the instability of Julia sets. In a similar vein, we also consider forward orbits of critical points and limit sets of Kleinian groups.


1996 ◽  
Vol 16 (4) ◽  
pp. 833-848 ◽  
Author(s):  
Sebastian Van Strien

AbstractIn this paper we shall give examples of rational maps on the Riemann sphere and also of polynomial interval maps which are transitive but not ergodic with respect to Lebesgue measure. In fact, these maps have two disjoint compact attractors whose attractive basins are ‘intermingled’, each having a positive Lebesgue measure in every open set. In addition, we show that there exists a real bimodal polynomial with Fibonacci dynamics (of the type considered by Branner and Hubbard), whose Julia set is totally disconnected and has positive Lebesgue measure. Finally, we show that there exists a rational map associated to the Newton iteration scheme corresponding to a polynomial whose Julia set has positive Lebesgue measure.


1993 ◽  
Vol 13 (1) ◽  
pp. 167-174 ◽  
Author(s):  
T. J. Ransford

AbstractLet (Rλ)λ∈D be an analytic family of rational maps of degree d ≥ 2, where D is a simply connected domain in ℂ, and each Rλ is hyperbolic. Then the Hausdorff dimension δ(λ) of the Julia set of Rλ satisfieswhere ℋ is a collection of harmonic functions u on D. We examine some consequences of this, and show how it can be used to obtain estimates for the Hausdorff dimension of some particular Julia sets.


2008 ◽  
Vol 18 (10) ◽  
pp. 3175-3181 ◽  
Author(s):  
MARK MORABITO ◽  
ROBERT L. DEVANEY

In this paper, we consider the family of rational maps given by [Formula: see text] where n ≥ 2, and λ is a complex parameter. When λ = 0 the Julia set is the unit circle, as is well known. But as soon as λ is nonzero, the Julia set explodes. We show that, as λ tends to the origin along n - 1 special rays in the parameter plane, the Julia set of Fλ converges to the closed unit disk. This is somewhat unexpected, since it is also known that, if a Julia set contains an open set, it must be the entire Riemann sphere.


2000 ◽  
Vol 20 (3) ◽  
pp. 895-910 ◽  
Author(s):  
GWYNETH M. STALLARD

Ruelle (Repellers for real analytic maps. Ergod. Th. & Dynam. Sys.2 (1982), 99–108) used results from statistical mechanics to show that, when a rational function $f$ is hyperbolic, the Hausdorff dimension of the Julia set, $\dim J(f)$, depends real analytically on $f$. We give a proof of the fact that $\dim J(f)$ is a continuous function of $f$ that does not depend on results from statistical mechanics and we show that this result can be extended to a class of transcendental meromorphic functions. This enables us to show that, for each $d \in (0,1)$, there exists a transcendental meromorphic function $f$ with $\dim J(f) = d$.


2002 ◽  
Vol 85 (2) ◽  
pp. 467-492 ◽  
Author(s):  
TIM BEDFORD ◽  
ALBERT M. FISHER ◽  
MARIUSZ URBAŃSKI

We define the scenery flow space at a point z in the Julia set J of a hyperbolic rational map $T : \mathbb{C} \to \mathbb{C}$ with degree at least 2, and more generally for T a conformal mixing repellor.We prove that, for hyperbolic rational maps, except for a few exceptional cases listed below, the scenery flow is ergodic. We also prove ergodicity for almost all conformal mixing repellors; here the statement is that the scenery flow is ergodic for the repellors which are not linear nor contained in a finite union of real-analytic curves, and furthermore that for the collection of such maps based on a fixed open set U, the ergodic cases form a dense open subset of that collection. Scenery flow ergodicity implies that one generates the same scenery flow by zooming down towards almost every z with respect to the Hausdorff measure $H^d$, where d is the dimension of J, and that the flow has a unique measure of maximal entropy.For all conformal mixing repellors, the flow is loosely Bernoulli and has topological entropy at most d. Moreover the flow at almost every point is the same up to a rotation, and so as a corollary, one has an analogue of the Lebesgue density theorem for the fractal set, giving a different proof of a theorem of Falconer.2000 Mathematical Subject Classification: 37F15, 37F35, 37D20.


1997 ◽  
Vol 17 (2) ◽  
pp. 253-267 ◽  
Author(s):  
A. G. ABERCROMBIE ◽  
R. NAIR

A rational map $T$ of degree not less than two is known to preserve a measure, called the conformal measure, equivalent to the Hausdorff measure of the same dimension as its Julia set $J$ and supported there, with respect to which it is ergodic and even exact. As a consequence of Birkhoff's pointwise ergodic theorem almost every $z$ in $J$ with respect to the conformal measure has an orbit that is asymptotically distributed on $J$ with respect to this measure. As a counterpoint to this, the following result is established in this paper. Let $\Omega(z)=\Omega_{T}(z)$ denote the closure of the set $\{T^{n}(z):n=1,2,\ldots\}$. For any expanding rational map $T$ of degree at least two we set \[ S(z_{0})=\{z\in J:z_{0}\not\in \Omega_{T}(z)\}. \] We show that for all $z_{0}$ the Hausdorff dimensions of $S(z)$ and $J$ are equal.


1992 ◽  
Vol 12 (1) ◽  
pp. 53-66 ◽  
Author(s):  
M. Denker ◽  
M. Urbański

AbstractLet h denote the Hausdorff dimension of the Julia set J(T) of a parabolic rational map T. In this paper we prove that (after normalisation) the h-conformal measure on J(T) equals the h-dimensional Hausdorff measure Hh on J(T), if h ≥ 1, and equals the h-dimensional packing measure Πh on J(T), if h ≤ 1. Moreover, if h < 1, then Hh = 0 and, if h > 1, then Πh(J(T)) = ∞.


2001 ◽  
Vol 21 (2) ◽  
pp. 563-603 ◽  
Author(s):  
HIROKI SUMI

We consider dynamics of sub-hyperbolic and semi-hyperbolic semigroups of rational functions on the Riemann sphere and will show some no wandering domain theorems. The Julia set of a rational semigroup in general may have non-empty interior points. We give a sufficient condition that the Julia set has no interior points. From some information about forward and backward dynamics of the semigroup, we consider when the area of the Julia set is equal to zero or an upper estimate of the Hausdorff dimension of the Julia set.


Sign in / Sign up

Export Citation Format

Share Document