scholarly journals Dynamics of postcritically bounded polynomial semigroups III: classification of semi-hyperbolic semigroups and random Julia sets which are Jordan curves but not quasicircles

2010 ◽  
Vol 30 (6) ◽  
pp. 1869-1902 ◽  
Author(s):  
HIROKI SUMI

AbstractWe investigate the dynamics of polynomial semigroups (semigroups generated by a family of polynomial maps on the Riemann sphere $\CCI $) and the random dynamics of polynomials on the Riemann sphere. Combining the dynamics of semigroups and the fiberwise (random) dynamics, we give a classification of polynomial semigroups G such that G is generated by a compact family Γ, the planar postcritical set of G is bounded, and G is (semi-) hyperbolic. In one of the classes, we have that, for almost every sequence $\gamma \in \Gamma ^{\NN }$, the Julia set Jγ of γ is a Jordan curve but not a quasicircle, the unbounded component of $\CCI {\setminus } J_{\gamma }$ is a John domain, and the bounded component of $\CC {\setminus } J_{\gamma }$ is not a John domain. Note that this phenomenon does not hold in the usual iteration of a single polynomial. Moreover, we consider the dynamics of polynomial semigroups G such that the planar postcritical set of G is bounded and the Julia set is disconnected. Those phenomena of polynomial semigroups and random dynamics of polynomials that do not occur in the usual dynamics of polynomials are systematically investigated.

2012 ◽  
Vol 32 (6) ◽  
pp. 1889-1929 ◽  
Author(s):  
DAVID FRIED ◽  
SEBASTIAN M. MAROTTA ◽  
RICH STANKEWITZ

AbstractWe study the dynamics of semigroups of Möbius transformations on the Riemann sphere, especially their Julia sets and attractors. This theory relates to the dynamics of rational functions, rational semigroups, and Möbius groups and we compare and contrast these theories. We particularly examine Caruso’s family of Möbius semigroups, based on a random dynamics variant of the Fibonacci sequence.


2017 ◽  
Vol 39 (9) ◽  
pp. 2481-2506 ◽  
Author(s):  
A. CONNES ◽  
E. MCDONALD ◽  
F. SUKOCHEV ◽  
D. ZANIN

If $c$ is in the main cardioid of the Mandelbrot set, then the Julia set $J$ of the map $\unicode[STIX]{x1D719}_{c}:z\mapsto z^{2}+c$ is a Jordan curve of Hausdorff dimension $p\in [1,2)$. We provide a full proof of a formula for the Hausdorff measure on $J$ in terms of singular traces announced by the first named author in 1996.


2014 ◽  
Vol 35 (6) ◽  
pp. 1846-1879 ◽  
Author(s):  
SÉBASTIEN GODILLON

It is known that the disconnected Julia set of any polynomial map does not contain buried Julia components. But such Julia components may arise for rational maps. The first example is due to Curtis T. McMullen who provided a family of rational maps for which the Julia sets are Cantor of Jordan curves. However, all known examples of buried Julia components, up to now, are points or Jordan curves and comes from rational maps of degree at least five. This paper introduces a family of hyperbolic rational maps with disconnected Julia set whose exchanging dynamics of postcritically separating Julia components is encoded by a weighted dynamical tree. Each of these Julia sets presents buried Julia components of several types: points, Jordan curves, but also Julia components which are neither points nor Jordan curves. Moreover, this family contains some rational maps of degree three with explicit formula that answers a question McMullen raised.


2016 ◽  
Vol 38 (2) ◽  
pp. 583-600 ◽  
Author(s):  
YAN GAO ◽  
PETER HAÏSSINSKY ◽  
DANIEL MEYER ◽  
JINSONG ZENG

In this paper, we prove that if $R:\widehat{\mathbb{C}}\rightarrow \widehat{\mathbb{C}}$ is a postcritically finite rational map with Julia set homeomorphic to the Sierpiński carpet, then there is an integer $n_{0}$, such that, for any $n\geq n_{0}$, there exists an $R^{n}$-invariant Jordan curve $\unicode[STIX]{x1D6E4}$ containing the postcritical set of $R$.


2021 ◽  
Vol 5 (2) ◽  
pp. 55
Author(s):  
Yang Zhao ◽  
Shicun Zhao ◽  
Yi Zhang ◽  
Da Wang

In this paper, a novel escape-time algorithm is proposed to calculate the connectivity’s degree of Julia sets generated from polynomial maps. The proposed algorithm contains both quantitative analysis and visual display to measure the connectivity of Julia sets. For the quantitative part, a connectivity criterion method is designed by exploring the distribution rule of the connected regions, with an output value Co in the range of [0,1]. The smaller the Co value outputs, the better the connectivity is. For the visual part, we modify the classical escape-time algorithm by highlighting and separating the initial point of each connected area. Finally, the Julia set is drawn into different brightnesses according to different Co values. The darker the color, the better the connectivity of the Julia set. Numerical results are included to assess the efficiency of the algorithm.


1996 ◽  
Vol 16 (6) ◽  
pp. 1323-1343 ◽  
Author(s):  
Kevin M. Pilgrim

AbstractWe prove: If f(z) is a critically finite rational map which has exactly two critical points and which is not conjugate to a polynomial, then the boundary of every Fatou component of f is a Jordan curve. If f(z) is a hyperbolic critically finite rational map all of whose postcritical points are periodic, then there exists a cycle of Fatou components whose boundaries are Jordan curves. We give examples of critically finite hyperbolic rational maps f with a Fatou component ω satisfying f(ω) = ω and f|∂ω not topologically conjugate to the dynamics of any polynomial on its Julia set.


2010 ◽  
Vol 30 (6) ◽  
pp. 1843-1867 ◽  
Author(s):  
P. ROESCH

AbstractWe consider cubic polynomials with a simple parabolic fixed point of multiplier 1. For those maps, we prove that the boundary of the immediate basin of attraction of the parabolic point is a Jordan curve (except for the polynomial z+z3 where it consists in two Jordan curves). Moreover, we give a description of the dynamics and obtain the local connectivity of the Julia set under some assumptions.


2021 ◽  
Vol 179 (1) ◽  
pp. 59-74
Author(s):  
Josef Šlapal

In this paper, we propose new definitions of digital Jordan curves and digital Jordan surfaces. We start with introducing and studying closure operators on a given set that are associated with n-ary relations (n > 1 an integer) on this set. Discussed are in particular the closure operators associated with certain n-ary relations on the digital line ℤ. Of these relations, we focus on a ternary one equipping the digital plane ℤ2 and the digital space ℤ3 with the closure operator associated with the direct product of two and three, respectively, copies of this ternary relation. The connectedness provided by the closure operator is shown to be suitable for defining digital curves satisfying a digital Jordan curve theorem and digital surfaces satisfying a digital Jordan surface theorem.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650045 ◽  
Author(s):  
Mianmian Zhang ◽  
Yongping Zhang

Lotka–Volterra population competition model plays an important role in mathematical models. In this paper, Julia set of the competition model is introduced by use of the ideas and methods of Julia set in fractal geometry. Then feedback control is taken on the Julia set of the model. And synchronization of two different Julia sets of the model with different parameters is discussed, which makes one Julia set change to be another. The simulation results show the efficacy of these methods.


2018 ◽  
Vol 98 (1) ◽  
pp. 89-101 ◽  
Author(s):  
MICHIEL DE BONDT ◽  
XIAOSONG SUN

Let $K$ be any field with $\text{char}\,K\neq 2,3$. We classify all cubic homogeneous polynomial maps $H$ over $K$ whose Jacobian matrix, ${\mathcal{J}}H$, has $\text{rk}\,{\mathcal{J}}H\leq 2$. In particular, we show that, for such an $H$, if $F=x+H$ is a Keller map, then $F$ is invertible and furthermore $F$ is tame if the dimension $n\neq 4$.


Sign in / Sign up

Export Citation Format

Share Document