scholarly journals A census of AGB stars in the Milky Way and M31 subgroups of dwarf-spheroidal galaxies

2004 ◽  
Vol 193 ◽  
pp. 153-157
Author(s):  
F. Kirschbaum ◽  
B. Heiling ◽  
W. Nowotny ◽  
Ch. Spindler ◽  
H. Olofsson ◽  
...  

AbstractFrom photometric observations out to the tidal radii of the galaxies, we were able to identify hundreds of new carbon stars, to derive mean absolute magnitudes〈Mi〉, luminosity functions, and the spatial/radial distributions of the carbon stars in these galaxies. For each galaxy this new material will allow estimates of the tips of their RGBs to derive distance moduli, to derive C/M ratios of the AGB populations and bolometric magnitudes Mbol. At the end of our survey a comparison of all quantities of the late-type stars as a function of the properties of the host galaxies will be made possible.

2018 ◽  
Vol 619 ◽  
pp. A35 ◽  
Author(s):  
M. Messineo ◽  
H.J. Habing ◽  
L. O. Sjouwerman ◽  
A. Omont ◽  
K. M. Menten

We present an 86 GHz SiO (v = 1,  J = 2 → 1) maser search toward late-type stars located within |b|< 0.​​°5 and 20° <  l <  50°. This search is an extension at longer longitudes of a previously published work. We selected 135 stars from the MSX catalog using color and flux criteria and detected 92 (86 new detections). The detection rate is 68%, the same as in our previous study. The last few decades have seen the publication of several catalogs of point sources detected in infrared surveys (MSX, 2MASS, DENIS, ISOGAL, WISE, GLIMPSE, AKARI, and MIPSGAL). We searched each catalog for data on the 444 targets of our earlier survey and for the 135 in the survey reported here. We confirm that, as anticipated, most of our targets have colors typical of oxygen-rich asymptotic giant branch (AGB) stars. Only one target star may have already left the AGB. Ten stars have colors typical of carbon-rich stars, meaning a contamination of our sample with carbon stars ≲1.7%.


2009 ◽  
Vol 5 (S262) ◽  
pp. 345-346
Author(s):  
M. Gullieuszik ◽  
E. V. Held ◽  
L. Girardi ◽  
L. Rizzi ◽  
P. Marigo ◽  
...  

AbstractAs part of our near-infrared photometric survey of nearby dwarf galaxies, we present recent results for Leo I and Leo II dwarf spheroidal galaxies. We selected O- and C-rich AGB stellar populations using two-color diagrams and compared their luminosity functions and star counts with the predictions of the most recent AGB theoretical models.


1999 ◽  
Vol 191 ◽  
pp. 53-58
Author(s):  
P. Marigo

We present recent improvements and results of an extensive analysis of the TP-AGB phase performed by means of a synthetic model (Marigo 1998a, b; Marigo et al. 1998a, b). The improvements concern: i) the use of a homogeneous and accurate set of analytical relations (Wagenhuber & Groenewegen 1998); ii) a new treatment of envelope burning in the most massive TP-AGB stars (M > 3.5M⊙) to account for the possible break-down of the core mass-luminosity relation; iii) a better treatment of the third dredge-up to infer if and when the process takes place.Extensive calculations of synthetic TP-AGB models have been carried out over the mass range (0.8M⊙ ÷ 5M⊙) and for three sets of initial metallicity (Z = 0.019, Z = 0.008, Z = 0.004). The formation of carbon stars is investigated addressing the following issues: a) the reproduction of the observed luminosity functions of carbons stars in both Magellanic Clouds, and b) the formation of very bright and optically obscured carbon stars.


2019 ◽  
Vol 623 ◽  
pp. A119 ◽  
Author(s):  
S. Bladh ◽  
K. Eriksson ◽  
P. Marigo ◽  
S. Liljegren ◽  
B. Aringer

Context. The heavy mass loss observed in evolved stars on the asymptotic giant branch (AGB) is usually attributed to dust-driven winds, but it is still an open question how much AGB stars contribute to the dust production in the interstellar medium, especially at lower metallicities. In the case of C-type AGB stars, where the wind is thought to be driven by radiation pressure on amorphous carbon grains, there should be significant dust production even in metal-poor environments. Carbon stars can manufacture the building blocks needed to form the wind-driving dust species themselves, irrespective of the chemical composition they have, by dredging up carbon from the stellar interior during thermal pulses. Aims. We investigate how the mass loss in carbon stars is affected by a low-metallicity environment, similar to the Large and Small Magellanic Clouds (LMC and SMC). Methods. The atmospheres and winds of C-type AGB stars are modeled with the 1D spherically symmetric radiation-hydrodynamical code Dynamic Atmosphere and Radiation-driven Wind models based on Implicit Numerics (DARWIN). The models include a time-dependent description for nucleation, growth, and evaporation of amorphous carbon grains directly out of the gas phase. To explore the metallicity-dependence of mass loss we calculate model grids at three different chemical abundances (solar, LMC, and SMC). Since carbon may be dredged up during the thermal pulses as AGB stars evolve, we keep the carbon abundance as a free parameter. The models in these three different grids all have a current mass of one solar mass; effective temperatures of 2600, 2800, 3000, or 3200 K; and stellar luminosities equal to logL*∕L⊙ = 3.70, 3.85, or 4.00. Results. The DARWIN models show that mass loss in carbon stars is facilitated by high luminosities, low effective temperatures, and a high carbon excess (C–O) at both solar and subsolar metallicities. Similar combinations of effective temperature, luminosity, and carbon excess produce outflows at both solar and subsolar metallicities. There are no large systematic differences in the mass-loss rates and wind velocities produced by these wind models with respect to metallicity, nor any systematic difference concerning the distribution of grain sizes or how much carbon is condensed into dust. DARWIN models at subsolar metallicity have approximately 15% lower mass-loss rates compared to DARWIN models at solar metallicity with the same stellar parameters and carbon excess. For both solar and subsolar environments typical grain sizes range between 0.1 and 0.5 μm, the degree of condensed carbon varies between 5 and 40%, and the gas-to-dust ratios between 500 and 10 000. Conclusions. C-type AGB stars can contribute to the dust production at subsolar metallicities (down to at least [Fe∕H] = −1) as long as they dredge up sufficient amounts of carbon from the stellar interior. Furthermore, stellar evolution models can use the mass-loss rates calculated from DARWIN models at solar metallicity when modeling the AGB phase at subsolar metallicities if carbon excess is used as the critical abundance parameter instead of the C/O ratio.


2020 ◽  
Vol 500 (3) ◽  
pp. 3776-3801
Author(s):  
Wenting Wang ◽  
Masahiro Takada ◽  
Xiangchong Li ◽  
Scott G Carlsten ◽  
Ting-Wen Lan ◽  
...  

ABSTRACT We conduct a comprehensive and statistical study of the luminosity functions (LFs) for satellite galaxies, by counting photometric galaxies from HSC, DECaLS, and SDSS around isolated central galaxies (ICGs) and paired galaxies from the SDSS/DR7 spectroscopic sample. Results of different surveys show very good agreement. The satellite LFs can be measured down to MV ∼ −10, and for central primary galaxies as small as 8.5 &lt; log10M*/M⊙ &lt; 9.2 and 9.2 &lt; log10M*/M⊙ &lt; 9.9, which implies there are on average 3–8 satellites with MV &lt; −10 around LMC-mass ICGs. The bright end cutoff of satellite LFs and the satellite abundance are both sensitive to the magnitude gap between the primary and its companions, indicating galaxy systems with larger magnitude gaps are on average hosted by less massive dark matter haloes. By selecting primaries with stellar mass similar to our Milky Way (MW), we discovered that (i) the averaged satellite LFs of ICGs with different magnitude gaps to their companions and of galaxy pairs with different colour or colour combinations all show steeper slopes than the MW satellite LF; (ii) there are on average more satellites with −15 &lt; MV &lt; −10 than those in our MW; (iii) there are on average 1.5 to 2.5 satellites with MV &lt; −16 around ICGs, consistent with our MW; (iv) even after accounting for the large scatter predicted by numerical simulations, the MW satellite LF is uncommon at MV &gt; −12. Hence, the MW and its satellite system are statistically atypical of our sample of MW-mass systems. In consequence, our MW is not a good representative of other MW-mass galaxies. Strong cosmological implications based on only MW satellites await additional discoveries of fainter satellites in extra-galactic systems. Interestingly, the MW satellite LF is typical among other MW-mass systems within 40 Mpc in the local Universe, perhaps implying the Local Volume is an underdense region.


2020 ◽  
Vol 636 ◽  
pp. L12 ◽  
Author(s):  
E. Järvelä ◽  
M. Berton ◽  
S. Ciroi ◽  
E. Congiu ◽  
A. Lähteenmäki ◽  
...  

It has been often suggested that a tangible relation exists between relativistic jets in active galactic nuclei (AGN) and the morphology of their host galaxies. In particular, relativistic jets may commonly be related to merging events. Here we present for the first time a detailed spectroscopic and morphological analysis of a Seyfert galaxy, SDSS J211852.96−073227.5, at z = 0.26. This source has previously been classified as a gamma-ray emitting narrow-line Seyfert 1 galaxy. We re-observed it with the 6.5 m Clay Telescope and these new, high-quality spectroscopic data have revealed that it is actually an intermediate-type Seyfert galaxy. Furthermore, the results of modelling the Ks-band near-infrared images obtained with the 6.5 m Baade Telescope indicate that the AGN is hosted by a late-type galaxy in an interacting system, strengthening the suggested connection between galaxy interactions and relativistic jets.


Author(s):  
Paul L. Schechter ◽  
Marc Aaronson ◽  
Kem H. Cook ◽  
Victor M. Blanco
Keyword(s):  

1989 ◽  
Vol 106 ◽  
pp. 229-231
Author(s):  
R.E. Stencel ◽  
J.E. Pesce ◽  
K.M. MacGregor

AbstractConventional theory explains the origin of carbon stars as due to dredge up of carbon enriched material from the stellar core during helium flash events late in the life of solar mass AGB stars (e.g. Boothroyd and Sackmann 1988). This relatively efficient process however, seems to produce a larger C/O ratio than observed (Lambert et al. 1987). A secondary effect which could contribute to the appearance of carbon stars, is the selective removal of oxygen from the atmosphere by radiative force expulsion of oxygen rich dust grains (e.g. silicates like [Mg, Fe2SiO4]). We present calculations for this scenario which evaluate the degree of momentum coupling between the grains and gas under the thermodynamical conditions of AGB star atmospheres.


Sign in / Sign up

Export Citation Format

Share Document